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Abstract
Genome-scale studies using high-throughput sequencing (HTS) technologies gener-
ate substantial lists of differentially expressed genes under different experimental 
conditions. These gene lists need to be further mined to narrow down biologically 
relevant genes and associated functions in order to guide downstream functional 
genetic analyses. A popular approach is to determine statistically overrepresented 
genes in a user-defined list through enrichment analysis tools, which rely on func-
tional annotations of genes based on Gene Ontology (GO) terms. Here, we propose 
a new computational approach, GenFam, which allows annotation, classification, 
and enrichment of genes based on their gene family, thus simplifying identification 
of candidate gene families and associated genes that may be relevant to the query. 
GenFam and its integrated database comprises of three hundred and eighty-four 
unique gene families and supports gene family analyses for sixty plant genomes. 
Four comparative case studies with plant species belonging to different clades and 
families were performed using GenFam which demonstrated its robustness and com-
prehensiveness over preexisting functional enrichment tools. To make it readily ac-
cessible for plant biologists, GenFam is available as a web-based application where 
users can input gene IDs and export enrichment results in both tabular and graphical 
formats. Users can also customize analysis parameters by choosing from the various 
statistical enrichment tests and multiple testing correction methods. Additionally, 
the web-based application, source code, and database are freely available to use and 
download. Website: http://manda dilab.webfa ction al.com/home/. Source code and 
database: http://manda dilab.webfa ction al.com/home/dload/ .
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1  | INTRODUC TION

In recent years, genome-wide analyses using high-throughput se-
quencing (HTS) technologies have become indispensable to life 
science research. Generating large-scale datasets has become 
relatively straightforward, as opposed to efficiently interpret-
ing the data to gain intuition into biologically significant mech-
anisms. Data mining tools that determine, predict, and enrich 
putative functions among HTS datasets are highly valuable for 
such genomic analyses (Backes et al., 2007). For instance, RNA-
sequencing (RNA-seq) analysis is a high-throughput approach to 
study transcriptome regulation by determining transcript-level 
changes in multiple cell- or tissue-types, or among varying experi-
mental conditions (e.g., unstressed vs. stressed). In a typical RNA-
seq experiment, the analysis yields hundreds, if not thousands, of 
genes that are differentially expressed among the experimental 
conditions. Uncovering enriched biological pathways among these 
gene lists is a valuable starting step for downstream functional 
genetic analyses.

The Gene Ontology (GO)-term based enrichment tools (e.g., 
BinGO (Maere, Heymans, & Kuiper, 2005), Blast2GO (Conesa et al., 
2005), AgriGO (Du, Zhou, Ling, Zhang, & Su, 2010), and PlantGSEA 
(Yi, Du, & Su, 2013)) are widely used by researchers to infer the bi-
ological mechanisms of genes identified in HTS experiments (Bedre 
et al., 2019, 2015; Bedre, Mangu, Srivastava, Sanchez, & Baisakh, 
2016; Chen et al., 2013; Li, Dai, Hu, Liu, & Kang, 2017; Mandadi 
& Scholthof, 2012, 2015). These tools identify overrepresented 
GO terms associated within a user-defined list of genes by map-
ping them to the background genome annotations and calculating 
statistical probability of the enrichment relative to the background 
database. The enrichment tools can classify genes into GO catego-
ries or pathways related to biological process, molecular function, 
and cellular locations (Du et al., 2010; Goffard & Weiller, 2007). The 
GO-enrichment and the resultant hierarchy are very useful to un-
derstand the complex biological processes that are being enriched. 
However, information on specific biological attributes of a gene, 
such as the gene family (a group of homologous genes with com-
mon evolutionary origin and biological functions) level information, 
is hard to glean from GO-enrichment alone (Ashburner et al., 2000; 
Lee, Katari, & Sachidanandam, 2005). For instance, enrichment of a 
transcription factor will fetch GO terms for “regulation of transcrip-
tion (GO:0006355)” or “DNA binding (GO:0003700)” or “response 
to stress (GO:0006950)” but does not identify which transcrip-
tion factor family genes (e.g., WRKY and bZIP) being enriched. 
Having this information allows users to readily interpret large-scale 
datasets effectively and select favorite gene families for further 
functional studies. While providing the information for functional 
studies, gene families also could reveal the accurate gene anno-
tation information that could not be easily determined by BLAST-
based tools alone. Further, comparative gene family size analysis 
can certainly be informative and valuable approach to explore the 
biologically relevant functions related to genome architecture and 
adaptation or speciation of various plant species (Guo, 2013).

With the availability of complete genomes and sequence data, 
identification, and analysis of specific gene families among plant 
species has become necessary. In this study, we present a unique 
approach to perform annotation, classification, and enrichment 
of genes to identify overrepresented gene families (GenFam) in 
a user-defined query list. We suggest that GenFam is a valuable 
addition to a plant biologists toolkit to analyze large-scale HTS 
datasets. By determining overrepresented gene families in a us-
er-defined gene list, rather than GO terms or hierarchy alone, 
GenFam empowers users to readily interpret information of gene 
families (e.g., WRKY and bZIP) in their queries, and move forward 
to selecting favorite overrepresented genes (or families) for down-
stream studies and interpretation. GenFam is also freely accessible 
to users on the World Wide Web, as a user-friendly, graphical-user 
interface.

2  | MATERIAL S AND METHODS

2.1 | Background database

GenFam currently supports the analysis of sixty plant genomes. 
GenFam classifies genes into 384 representative and unique gene 
families, which to the best of our knowledge the largest collec-
tion, based on the well-annotated Arabidopsis thaliana (Berardini et 
al., 2015) and rice (Oryza sativa) (Kawahara et al., 2013) genomes, 
literature search, and Pfam protein families database (El-Gebali et 
al., 2019). We have identified and used Pfam common conserved 
domains and domain organization among the homologous gene 
sequences to assign the gene families. These highly conserved do-
mains define protein functions and classify protein-coding genes 
into gene families. The conserved signature protein domains have 
the ability to detect the divergent or distantly related homologs 
which would be prohibitive with sequence-based similarity analysis 
tools [e.g., BLAST (Altschul et al., 1997)]. Therefore, domain-based 
search method would identify more genes belonging to gene families 
than BLAST-based homology search.

For GenFam implementation, we have leveraged publicly avail-
able plant genome resources of Phytozome (v12) and developed a 
curated database that serves as the background reference. All gene 
IDs within a user-defined input list are mapped to this reference da-
tabase to assign genes into families, and subsequently overrepre-
sented gene families in the input list are computed by comparing to 
the background database. For developing the database, the protein 
sequences of sixty plant genomes were used to identify conserved 
protein domains to assign families to known and unclassified or novel 
genes. The respective protein domains were predicted by HMMER 
(v3.1b2) using a protein family hidden Markov model (HMM) pro-
files (Pfam release 32.0) (El-Gebali et al., 2019). We have established 
rules to classify and assign the genes to gene families based on the 
presence of signature conserved protein domains and have provided 
in Table S1. This approach allowed us to maximize classification in-
cluding orphan genes with missing annotations, genes with incorrect 
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annotations, and novel genes present among the respective genome 
databases. Lastly, the background databases were curated to re-
move redundancy and duplication of gene members among fami-
lies. In summary, we were able to integrate 384 representative gene 
families and corresponding (on an average ~41%) genes from sixty 
plant genomes into our database (Table S2). This is a comprehen-
sive collection of gene families spanning sixty plant species, when 
compared to other existing databases. For instance, the recently 
published gene family database in poplar (GFDP) has classified 6,551 
poplar genes into 145 gene families derived from Arabidopsis ge-
nome (Wang et al., 2018). PlantTFDB (v4.0) and PlnTFDB (v3.0) has 
classified the genes into 58 and 84 transcription factor gene fami-
lies (Jin et al., 2017; Perez-Rodriguez et al., 2010). Similarly, another 
database and analysis toolkit, PlantGSEA, supports the gene fam-
ily analysis for 13 plant species which mostly imports gene families 
from well-annotated genomes such as rice (118 gene families) and 
maize (81 gene families) (Yi et al., 2013).

All the gene family data were formatted using the PostgreSQL 
database to perform classification and enrichment analysis using 
various statistical enrichment methods. The GenFam database with 
complete protein domain annotation and gene family classification 
can be downloaded from the GenFam website (http://manda dilab.
webfa ction al.com/home/dload/ ). Detailed statistics for the number 
of genes assigned to each gene family and the total number of back-
ground genes are provided in Table S2.

2.2 | Statistical enrichment methods

GenFam performs three main functions: (a) Annotation (b) classi-
fication, and (c) enrichment of a user-defined gene list to provide 
gene family-level attributes. The enrichment is based on the singu-
lar enrichment analysis (SEA) method, which computes enrichment 
of a user-defined list of genes with a precomputed background da-
tabase (da Huang, Sherman, & Lempicki, 2009). GenFam accepts 
different types of gene IDs for the analysis. For example, for rice, 
it accepts gene (e.g., LOC_Os01g06882) and transcript (e.g., LOC_
Os01g06882.1) IDs from parent database such as the Rice Genome 
Annotation Project (http://rice.plant biolo gy.msu.edu/). Additionally, 
GenFam also accepts Phytozome PAC IDs for a given gene (e.g., 
24120792 for LOC_Os01g06882), which provides additional flex-
ibility in performing the analysis. To determine an acceptable ID, the 
user can run the “check allowed ID type for each species” function 
on the GenFam analysis page (http://manda dilab.webfa ction al.com/
famil y/). Once the appropriate gene IDs are provided, GenFam clas-
sifies and identifies specific gene families and members that are 
overrepresented in the input gene list.

Even though there is no defined standard for choosing a refer-
ence background, it is ideal to select a background that will increase 
coverage (or intersection) with an input gene list, as well as that en-
hances specificity of the enrichment analysis (da Huang et al., 2009). 
GenFam utilizes the number of total genes categorized/annotated 
into gene families in each plant species as a reference background, 

rather than using the whole genome. This feature greatly improves 
the specificity of the enrichment analysis by implementing statisti-
cally stringent criteria. For instance, for case study 1, if enrichment 
analysis was performed with the whole genome as background, it 
would result in 35 enriched gene families with much lower P-values, 
when compared to using the current GenFam background (29 en-
riched gene families) (Table S3).

GenFam can employ standard statistical tests such as the Fisher 
exact, chi-square (χ2), binomial distribution, and hypergeomet-
ric tests for enrichment, along with multiple testing corrections to 
control a false discovery. We recommend using Fisher exact, chi-
square (χ2) and hypergeometric tests for smaller datasets (<1,000) 
(McDonald, 2009), and binomial distribution for larger datasets 
(Khatri & Draghici, 2005; Zheng & Wang, 2008). Furthermore, the 
chi-square (χ2) test would be appropriate when the user-defined 
gene list has less overlap with the background database. As a de-
fault test, GenFam performs the Fisher exact test, which relies on 
the proportion of observed data, instead of a value of a test statistic 
to estimate the probability of genes of interest corresponding to a 
specific category.

To address the false positives resulting from multiple compari-
sons especially when the input gene list is large (>1,000), GenFam 
subsequently employs false discovery correction methods including 
the Benjamini-Hochberg (Benjamini & Hochberg, 1995), Bonferroni 
(1936) and Bonferroni-Holm (Holm, 1979). The various statistical 
tests and false discovery correction methods can be customized by 
the user as appropriate.

2.3 | Web server implementation

The GenFam web server is implemented using Python 3 (https ://
www.python.org/), Django 1.11.7 (https ://www.djang oproj ect.
com/), and PostgreSQL (https ://www.postg resql.org/) database. 
All the codes for data formatting and statistical analysis are imple-
mented using Python scripting language. Python is a fully fledged 
programming language which offers well-developed packages 
for statistical analysis, graphics, and integration with web apps. 
Therefore, we have chosen Python over other languages such as 
R for development of GenFam. The high-level Python web frame-
work was constructed using Django. The Python web framework 
was hosted using WebFaction (https ://www.webfa ction.com/). 
The web-based templates were designed using Bootstrap, HTML, 
and CSS. The GenFam is compatible with all major browsers includ-
ing Internet Explorer, Microsoft Edge, Google Chrome, Mozilla, and 
Safari. All the precomputed plant gene family background databases 
were built using advanced PostgreSQL database. The analyzed 
data were visualized using the matplotlib (Droettboom et al., 2016) 
Python plotting library.

Along with enrichment results for the gene families, GenFam 
also provides information related to GO terms in biological process, 
molecular function and cellular component categories associated 
with the enriched gene families. In addition to GO terms, GenFam 

http://mandadilab.webfactional.com/home/dload/
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https://www.python.org/
https://www.djangoproject.com/
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https://www.postgresql.org/
https://www.webfaction.com/
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also provides the gene family size and gene IDs associated with 
each gene family. These results can be downloaded as a tabular file 
(“Enriched Families”) or as a graphical figure of the enriched families 
(“Get Figures”). If users only want to retrieve the classification of 
genes, GenFam parses another tabular file containing the informa-
tion of all annotated gene families (“All Families”).

3  | RESULTS AND DISCUSSION

A snapshot of the analysis page and workflow is shown in Figure 1. 
Users have the option to either use the default settings or select de-
sired statistical parameters. The analysis page also guides the users 
to select gene IDs that are acceptable in GenFam (Figure 1). Users 
are directed to the results after analysis is completed (Figure 1). The 
results of GenFam analysis are displayed as summary table (HTML) 
and graphical chart plotted using the -log10(p-value) scores. Higher 
the -log10(p-value) value, greater the confidence in enrichment of 
the gene family (Figure 2). The enriched and non-enriched gene fam-
ily results can also be downloaded as tabular files, with further de-
tails of associated p-value and FDR statistics, gene family size, gene 
IDs, and GO terms.

3.1 | Case studies and analysis

To demonstrate the utility of GenFam, we performed four case 
studies using transcriptome datasets related to plants from differ-
ent clades and families (cotton, tomato, soybean, and rice) (Bedre et 
al., 2015; Cui et al., 2018; Dametto et al., 2015; Zeng et al., 2017). 
We have previously identified 662 differentially expressed genes 

in cotton (Gossypium raimondii, family Malvaceae) infected with 
Aspergillus flavus (Bedre et al., 2015). For the first case study, we 
used GenFam to determine the enriched gene families among these 
differentially expressed genes, using the options of Fisher exact test 
for statistical enrichment, and the Benjamini-Hochberg (Benjamini 
& Hochberg, 1995) method to control false discovery rate (FDR). 
Among the 662 genes, 514 genes were annotated and classified 
into gene families, resulting in ~78% intersection/coverage with 
the GenFam database. The GenFam enrichment analysis revealed 
overrepresented gene families such as expansins, kinases, reactive 
oxygen species (ROS) scavenging enzymes, defense-related genes, 
heat shock proteins, and transcription factors—genes that we have 
hypothesized to mediate cell wall modifications, antioxidant activ-
ity, and defense signaling in response to A. flavus infection (Bedre 
et al., 2015). Additionally, GenFam also identified new enriched 
gene families such as bHLH, GH3, glycosyltransferases and thau-
matin that were not reported or identified (Figures 1 and 2; Table 
S3). In the second case study, we analyzed 758 genes which were 
up-regulated in a cold-tolerant rice (Oryza sativa, family Poaceae) 
(Dametto et al., 2015). Among the 758 genes, 460 genes were an-
notated and classified into gene families by GenFam, resulting in 
~61% intersection/coverage with the GenFam database. GenFam 
was able to successfully determine enriched gene families related 
to aquaporins, glutathione S-transferases (GST), transporters, lipid 
metabolism, transcription factors as well as gene families involved 
in cell wall-related mechanisms (Table S4)—genes that were hypoth-
esized by Dametto et al. (2015) to play a role in the rice cold stress 
response. Additionally, GenFam also identified new enriched gene 
families such as aldehyde dehydrogenase (ADH), kinesins, glyco-
syltransferases, tubulin, phenylalanine ammonia-lyase (PAL), and 
thaumatin that were not reported or identified (Table S4). Next, we 

F I G U R E  1   GenFam workflow. The list of input gene IDs for respective plant species provided by the user is analyzed for enrichment 
analysis using various statistical tests. The output of the analysis can be viewed and/or downloaded as a table and/or graphical summary. 
The results page has multiple options to visualize or download data for both enriched and non-enriched categories (all gene families). The 
detailed output data from case studies are provided in Tables S3, S4, S5, and S6
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analyzed the differentially regulated genes from tomato (Solanum ly-
copersicum, family Solanaceae) (Cui et al., 2018) and soybean (Glycine 
max, family Fabaceae) (Zeng et al., 2017) using GenFam (Table S5 
and S6). We obtained ~65% and ~59% intersection/coverage with 
the GenFam database for tomato and soybean, respectively. The 
GenFam results in both these studies revealed enrichment of several 
gene families that were overrepresented and reported by Cui et al. 
(2018) (Cui et al., 2018) and Zeng et al. (2017) (Zeng et al., 2017) 
(Table S5 and S6). Additionally, GenFam also identified new enriched 
gene families such as aquaporins, VQ, tify, GST, and PAL in tomato, 
and BET, dirigent, expansins, asparagine synthase (ASNS), and car-
bonic anhydrase (CA) in soybean that were not reported or identified 
(Table S5 and S6). The detailed statistics of enriched gene families 
for these case studies are provided in Tables S3, S4, S5, and S6.

3.2 | GenFam advantages and comparison with 
preexisting enrichment tools

To the best of our knowledge, there is only one existing enrichment 
tool that comes close to the GenFam approach, that is, PlantGSEA 
(Yi et al., 2013), which also allows users to enrich gene lists using 
gene family attributes. Hence, we performed a comparative analysis 
of GenFam and PlantGSEA with a dataset from cotton (662 genes) 
(Bedre et al., 2015) and employing identical parameters (Fisher's 
exact test and Benjamini-Hochberg method) for enrichment. GenFam 
enriched gene families belonging to cell wall modifying genes, ROS 
scavenging genes, transcription factors, lipid metabolism, and stress-
responsive gene families, both new and previously shown to be bio-
logically relevant during A. flavus infection of cotton (Bedre et al., 
2015), while PlantGSEA missed several of these categories (Table S3 
and S7). Upon further examination, we found that several gene family 
categories such as the ABC transporters, expansins, and glutathione 

S-transferase were absent in the PlantGSEA G. raimondii background 
database. Moreover, PlantGSEA supports only thirteen plant ge-
nomes with several redundant and overlapping genes and gene fami-
lies, which could impact the accuracy of the enrichment analysis. For 
instance, in the A. thaliana genome there are 37 annotated “C2-C2 
Dof” transcription factors. PlantGSEA categorized 36 out of the 37 
genes into a “C2-C2 Dof” family, but also into an additional “Dof” 
family leading to redundant gene family categories. GenFam avoids 
such discrepancies by curation and filtering redundant categories.

Taken together, we suggest that GenFam is a comprehensive and 
robust gene family classification and enrichment program over prevail-
ing tools, with several advantages: (a) GenFam is a dedicated and com-
prehensive platform for gene family-level classification, annotation, and 
enrichment analysis and supports sixty plant genomes including model 
and non-model plant species. (b) GenFam background database was 
constructed from well-annotated gene families of A. thaliana and rice 
genomes, literature search, and as well as a systematic HMM profile 
search for signature conserved protein domain analysis using the Pfam 
database. This inclusive strategy enabled us to categorize most of the 
genes into families, including those which may lack a defined annotation 
in their corresponding genome database or could be novel genes. As a 
result, GenFam database is by far the largest collection of gene families 
(384 families). In contrast, existing databases such as PlantGSEA and 
GFDP only relies on annotations defined by other databases such as 
TAIR and MSU annotations and/or other transcription factor databases 
(Wang et al., 2018; Yi et al., 2013). The lack of additional analysis of 
protein domains perhaps explains the poor representation of gene fam-
ilies in PlantGSEA and GFDP databases. (c) GenFam background data-
base was curated to remove redundancy and overlapping genes into 
different gene families that enhances the accuracy of the analysis. (d) 
In contrast to PlantGSEA, GenFam uses the annotated gene families as 
reference background instead of the whole genome. This feature en-
sures decreasing enrichment bias and increasing the accuracy of the 

F I G U R E  2   Graphical summary of 
GenFam enrichment analysis of a cotton 
case study. Results are plotted as bar 
chart using the −log10(p-value) scores. 
Higher the −log10(p-value) value, greater 
the confidence in enrichment of the gene 
family
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analysis (da Huang et al., 2009). (e) GenFam accepts multiple input IDs 
including, gene IDs, transcript IDs, and PAC IDs; however, PlantGSEA 
and GFDP are restricted to using only gene IDs. (f) GenFam can be 
solely used for gene family annotation and classification regardless of 
enrichment analysis if a user is only interested in annotating genes.

4  | CONCLUSION

Data mining of big datasets (e.g., HTS data) is a very important step 
and approaches that can systematically mine biologically relevant 
information from big data are highly desirable. GO term-based en-
richment analyses, although very useful to gain insight about the 
complex biological information, does not reveal specific gene family-
level attributes or overrepresented gene families. GenFam can be 
used as a complementary or alternative approach to GO-based en-
richment to interpret biologically relevant information in big data-
sets by classifying and enriching gene families within a user-defined 
gene list. This specific information on which gene families are over-
represented allows users to readily identify favorite genes for down-
stream inquiries. Along with enriching gene families, GenFam can 
be useful to annotate the large list of genes generated from HTS 
experiments irrespective of enrichment analysis. In conclusion, we 
suggest that GenFam would be a valuable and powerful tool for 
plant biologists utilizing genomics strategies to study plant biology 
and functional genetics.
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