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Spinach, a member of the Amaranthaceae family, is 
an economically important leafy green crop that is 

widely grown in the United States. Although the spinach 
production area has grown steadily during the past 7 yr 
(https://www.nass.usda.gov/Quick_Stats/CDQT/chap-
ter/1/table/36/state/US, accessed 28 June 2019), this crop 
must thrive in a dynamic environment that includes con-
stant challenges by abiotic and biotic stresses, which can 
reduce yield and quality (Lyon et al., 2016; Agarwal et al., 
2018; Feng et al., 2018; Min et al., 2018). Therefore, one 
current challenge in spinach production is to increase 
crop productivity by improving disease resistance and 
environmental stress tolerance.

Spinach is a highly diverse species (Christenhusz 
and Byng, 2016) and because of the dioecious nature of 
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ABSTRACT  Despite advances in sequencing for genotyping, 
the lack of rapid, accurate, and reproducible phenotyping 
platforms has hampered efforts to use genetic analysis to predict 
traits of interest. Therefore, the use of high-throughput systems 
to phenotype traits related to crop growth, yield, quality, and 
resistance to biotic and abiotic stresses has become a major asset 
for breeding. Here, we assessed the efficacy of unmanned aircraft 
system (UAS)-based high-throughput phenotyping to obtain data 
for molecular marker development for spinach (Spinacia oleracea 
L.) improvement. We used a UAS equipped with a red–green–
blue sensor to capture raw images of 284 spinach accessions 
throughout the crop cycle. Processed images generated 
orthomosaic and digital surface models for estimating canopy 
cover, canopy volume, and excess greenness index models. In 
addition, we manually recorded the number of days to bolting. 
Genome-wide association studies against a single-nucleotide 
polymorphism (SNP) panel obtained by ddRADseq identified 99 
SNPs significantly associated with growth parameters. Some of 
these SNPs are in transcription factor and stress-response genes 
with possible roles in plant growth and development. The results 
underscore the utility of combining aerial imaging and genomic 
data analysis to optimize marker development. This study lays the 
foundation for the use of UAS-based high-throughput phenotyping 
for the molecular breeding of spinach.
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core ideas

•	 High-throughput imaging and genomic information 
can be combined to optimize marker development.

•	 Genome-wide association studies identified loci 
associated with plant growth traits.

•	 We identified candidate genes associated with plant 
growth and development.

Abbreviations:  CC, canopy cover; CCmax, maximum canopy cover; chr, 
chromosome; CVol, canopy volume; CVolmax, maximum canopy volume; 
DAS, days after sowing; DASbolt, days after sowing until early bolting; DASCC, 
days after sowing to maximum canopy cover; DASCVol, days after sowing to 
maximum canopy volume; DASExG, days after sowing to maximum excess 
greenness index; DASkf, days after sowing until kernel filling; DASpoll, days after 
sowing until pollination; DSM, digital surface model; ExG, excess greenness 
index; ExGmax, maximum excess greenness index; GWAS, genome-wide 
association studies; H2, broad-sense heritability; h2, narrow-sense heritability; 
K, the number of computation clusters used to determine the representative 
Q for the study population; k, kinship matrix; LD, linkage disequilibrium; 
MDS, multidimensional scaling; NPGS, National Plant Germplasm System; 
P3D, previously determined default population parameters; PCA, principal 
component analysis; PVE, phenotypic variance explained; Q, the number 
of computation clusters with a list of genetic distance probabilities for each 
accession in the population; RGB, red–green–blue; SNP, single nucleotide 
polymorphism; UAS, unmanned aircraft system; VIF, variance inflation factor.
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spinach (female and male organs on separate plants), 
breeding efficiency is very low with conventional meth-
ods. Moreover, the lack of good linkage maps and high-
density molecular markers has hampered the application 
of modern molecular breeding methods in spinach. 
However, with advances in next-generation sequencing 
and the recent availability of a draft reference genome for 
spinach (Xu et al., 2017), as well as the identification of a 
large panel of SNPs by high-throughput genotyping (Shi 
et al., 2016a, 2016b, 2017; Qin et al., 2017), it is now pos-
sible to identify many markers.

To link these markers precisely to traits of interest, 
large, diverse populations for association studies and 
moderately sized biparental populations for targeted traits 
must be phenotyped. Phenotyping has traditionally been 
performed by taking manual measurements at one or 
a few time points, a laborious approach that is prone to 
high variability resulting from human error. Phenotypic 
information should reflect a continuous and complex set 
of responses to multi-dimensional endogenous and exog-
enous signals that change throughout the lifecycle of an 
individual plant and in response to environmental condi-
tions (Tessmer et al., 2013; Moharana and Dutta, 2016). 
Therefore, complete phenomic characterization remains a 
long-term goal (Houle et al., 2010; Cobb et al., 2013).

In this area, horticultural crops such as spinach have 
lagged behind other field crops such as maize (Zea mays 
L.), rice (Oryza sativa L.), wheat (Triticum aestivum L.), 
and sorghum [Sorghum bicolor (L.) Moench.] (Tripodi et 
al., 2018). One challenge is to capture phenotypic infor-
mation at a throughput and quality sufficient to mine 
usable information. Indeed, only a few reports describe 
the use of proximal instrumentation to phenotype plants 
(Tripodi et al., 2018), making it challenging to examine 
large numbers of plants under different environmen-
tal conditions, especially in a field environment. For 
instance, hyperspectral imaging has been limited to 
examining pigments and quality in plants under stor-
age conditions (Diezma et al., 2013; Zhang et al., 2017), 
monitoring N content and biomass in a controlled envi-
ronment (Corti et al., 2017), and using hyperspectral 
and ultraviolet fluorescence to detect contaminants on 
harvested leaves (Everard et al., 2014). Therefore, it is 
critical to develop high-throughput phenotyping meth-
ods that can reduce variability and ultimately improve 
breeding efficiency and cultivar development in spinach. 
Moreover, phenotyping of spinach must quickly evolve 
to be technology-driven and high-throughput (Berger et 
al., 2012), to be more accurate and less subjective, and to 
have improved phenotyping capabilities.

The UAS phenotyping platform, combined with 
digital image analysis, offers an emerging option for high-
throughput phenotyping. Analysis of digital images taken 
via proximal or remote sensing phenotyping platforms 
allows us to examine plants in the ultraviolet, visible 
light, infrared, near infrared, and other thermal ranges 
or in the form of fluorescence. In this method, informa-
tion about several traits can be extracted simultaneously 

(Fahlgren et al., 2015; Tripodi et al., 2018). Digital aerial 
photography and multispectral and hyperspectral imag-
ing from fixed-wing aircraft have been successfully used 
to discriminate and map long-range spatial features 
(Everitt et al., 2007; Sheard et al., 2010) but the details and 
resolution substantially vary and photographic cameras 
are limited to the visible light range. However, the use of 
image stacking (a top-view image and side views from 
multiple images taken with a side-mounted or angled 
photographic cameras) and algorithms to identify plant-
derived pixels (Sheard et al., 2010; Chen et al., 2014; Neil-
son et al., 2015) have enabled the successful use of light 
imaging to measure the morphological (shape, structure), 
geometric (length, area), and color properties of individ-
ual plants or groups of plants. Such measurements in the 
visible light range have been used to estimate plant bio-
mass, approximate plant volume, and measure total leaf 
area to model the fresh and dry weights of aboveground 
biomass in barley (Hordeum vulgare L.), sorghum, wheat, 
and rice (Golzarian et al., 2011; Hairmansis et al., 2014; 
Yang et al., 2014a; Fahlgren et al., 2015; Neilson et al., 
2015). Similar methods have been used to model dynamic 
processes such as plant growth rates in sorghum, Arabi-
dopsis thaliana (L.) Heynh., and barley (Tessmer et al., 
2013; Yang et al., 2014b; Neilson et al., 2015). However, 
phenotypic imaging in the visible light range has not been 
widely used for vegetables, particularly spinach.

In A. thaliana, phenotypic traits such as leaf length, 
rosette area, and plant vegetation conditions have been 
successfully extracted from images obtained with low-
cost, off-the-shelf digital visible light cameras. The phe-
notypic data have been successfully validated across two 
platforms: a stationary indoor platform and a movable 
platform in the field. However, many (108) cameras were 
used indoors to obtain a total field of view of less than 
11 m2, whereas the two cameras used in the field had to 
be moved manually to seven field of view points along a 
metal frame to cover an area of less than 1 m2 and with an 
80% field of view overlap between cameras from a height 
of only 0.95 m (An et al., 2016). This method would be 
expensive and present logistical challenges when used in 
a larger experimental field because of the large number 
of cameras required, ground-level disturbance, shadow-
ing from equipment, and the need for expensive facility 
fixtures. Furthermore, most such studies have mainly 
focused on obtaining phenotypic information coupled 
with physiological, chemical, and/or agronomic interpre-
tations but have not been designed to model the under-
lying genetic architecture (Wang et al., 2018). The few 
studies that have attempted to model trait–genome asso-
ciations have mainly used manually acquired, proximal, 
contact, or destructive phenotyping methods (Cabrera-
Bosquet et al., 2012; Steidle Neto et al., 2017). Thus the 
potential advantages and power of remotely sensed data 
have not been adequately tested for field-grown vegetables.

In the present study, we used remote sensing technol-
ogy to obtain agronomic growth metrics in field-grown 
spinach and used the resulting data to test for molecular 
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marker signals in a dense spinach genomic SNP map. The 
goal was to determine the utility of visible light imaging 
from a UAS platform for improving field phenotyping 
throughput for genomic studies in spinach and to moti-
vate similar studies in other leafy greens. We used an 
autonomous aerial system with red–green–blue (RGB) 
sensors to capture images of 284 spinach accessions in 
the field over an 11-wk period. The digital signals were 
converted into numerical data and imputed into canopy 
cover (CC), canopy volume (CVol), and excess greenness 
index (ExG) values. We determined the maximum values 
of these phenotypes and the corresponding days after 
sowing at which the maximum observations were made. 
We also manually recorded the number of days to bolting. 
These observations were used as the traits that were sub-
jected to association studies against SNP data obtained by 
high-throughput genotyping-by-sequencing. By using this 
approach, we identified 99 SNPs that were significantly 
associated with measured spinach growth parameters, 
thus demonstrating that it is possible to combine aerial 
imaging with information about genomic architecture to 
optimize marker development for spinach breeding.

MATERIALS AND METHODS
Plant Material
A total of 284 spinach accessions were used in this study, 
including 264 accessions provided by the USDA-National 
Plant Germplasm System (NPGS) and 20 lines from the 
Texas A&M AgriLife Research spinach vegetable breed-
ing program. The countries of origin (USDA-NPGS 
records), regional groupings, and other categories used in 
this study are given in Supplemental Table S1. The origin 
of the USDA spinach accessions has also been described 
previously (Shi et al., 2016b, 2017). Detailed descriptions 
based on accession can be accessed at (https://npgsweb.
ars-grin.gov/gringlobal/view2.aspx?dv=web_site_taxon_
accessionlist&params=:taxonomyid=35256;:siteid=16, 
accessed 18 June 2019). For brevity, we grouped the acces-
sions into continental subregions based on countries of 
origin including Eastern Africa (1), Eastern Europe (117), 
Far East (1), Middle East (44), South Asia (39), Texas 
A&M AgriLife Research breeding lines (20), US Central 
(2), US East Coast (19), US North (6), US Gulf Coast (12), 
Western Europe (22), and US East Coast (1). This diversity 
in germplasm origin was expected to provide sufficient 
genetic variation for the purposes of this study.

Field Design
This study was conducted at the Texas A&M AgriLife 
Research and Extension Center located in Weslaco, TX 
at a latitude of 26° 9’ 30” N and a longitude of 97° 57’ 
43’’. The 284 accessions were grown in a randomized 
complete block design with three replicates. Each plot 
was a double-row rectangular grid consisting of 14 plants 
spaced at ~10 cm between plants within a row of 10 
plants and 15 cm between the two rows. The plots were 
arranged in field rows, each consisting of 40 plots with 

1.22 m spacing between adjacent plots within a row and 
1.22 m between rows. Conventional agronomic practices 
for spinach were performed from land preparation to the 
end date of data collection. The crop was fertilized with a 
generalized N-P2O5–K2O rate of 135–84–90 kg/ha.

Unmanned Aircraft System Data Acquisition, 
Processing, and Extraction of Phenotypic Features
Unmanned aircraft system  data acquisition missions 
were conducted, beginning at approximately 40 d after 
sowing (DAS) for 11 consecutive weeks until the end of 
the season. The UAS data were acquired with a DJI Phan-
tom 4 Pro platform (DJI, Nanshan District, Shenzhen, 
China), which includes a RGB sensor with a 20-mega-
pixel resolution. Images were captured at consecutive 
intervals of ~7 d (1 wk) for a total of ~12 wk. The UAS 
flight missions were designed with a Pix4D Capture 
application (Pix4D Inc., San Francisco, CA) with a 18-m 
flying altitude and 84% overlap. In addition to UAS 
flight, GPS surveying on six permanent and two portable 
ground control points was conducted for accurate geore-
ferencing. Since the study area was approximately 4450 
m2 in size, the number and locations of ground control 
points were sufficient to remove geometrical errors from 
the UAS data (Mesas-Carrascosa et al., 2015). The coor-
dinates of all ground control points were surveyed with a 
differential dual-frequency GPS manufactured by V-Map 
(http://v-map.net/, accessed 18 June 2019). The raw 
images were processed to generate orthomosaic images 
and a digital surface model (DSM) with Agisoft Photo-
scan Pro software (Agisoft LLC, St. Petersburg, Russia). 
The spatial resolutions of the orthomosaic image and 
DSM on each date were 0.4 and 0.8 cm, respectively.

All UAS measurements, including CC, canopy height, 
CVol, and ExG were derived for each plot. For the measure-
ments, a geographical information system array consisting 
of small (0.9 by 0.9 m) grids was generated and the loca-
tions of each grid were manually fitted to each plant loca-
tion. Canopy cover measurements indicated the percentage 
of green canopy per grid unit. The Canopeo algorithm 
(Patrignani and Ochsner, 2015) was used to differentiate 
canopy pixels from other background pixels, and CC was 
calculated as the ratio between the number of canopy pix-
els and the total number of pixels within the grid. Canopy 
height was calculated by subtracting the initial DSM before 
planting from the DSM obtained later. The maximum 
canopy height value of each grid was assigned as a repre-
sentative value for each plant. Canopy volume was mea-
sured by multiplying each pixel’s area by its DSM value. 
The accumulated volume of all pixels on each grid was used 
to obtain CVol measurements. Excess greenness is an RGB-
based vegetation index known to be a good crop monitor-
ing parameter (Woebbecke et al., 1995). The average value 
of ExG within each grid was used for further analysis.

Plant Growth Models with UAS-Generated Data
Time series measurements of extracted UAS pheno-
typic features were used to model the growth patterns 

https://npgsweb.ars-grin.gov/gringlobal/view2.aspx?dv=web_site_taxon_accessionlist&params=:taxonomyid=35256;:siteid=16
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of individual spinach accessions by fitting them to the 
best polynomial curve function. The CVol, CC, and ExG 
curves were fitted to a univariate third-level polynomial 
function as shown in Fig. 1. Maximum growth values for 
each variable were calculated when the second deriva-
tive was equal to zero (F’’(x) = 0, Fig. 1). The number of 
DAS to reach the phenotypic maximum values for CVol 
(CVolmax), CC (CCmax), and ExG (ExGmax) were deter-
mined by estimating the corresponding DAS (x-axis) 
to CCmax (DASCC), DAS to CVmax (DASCVol), and DAS 
to ExGmax (DASExG). The DAS-based traits were used as 
indicators of earliness, plant development, and timing 
for management practices aimed at exploiting maximum 
growth and photochemistry, such as harvest at peak 

greenness and CVolmax before bolting and soil manage-
ment based on CC. We tested for multicollinearity on 
correlation coefficients among the nine traits using the 
variance inflation factor (VIF) adjusted for population 
size (Allison, 1999; O’Brien, 2007).

Plant Bolting
Bolting and floral development data were collected by 
visual inspection as inferred from the classification of 
Eguchi and Ichikawa (1940) and Kim et al. (2000), begin-
ning at flower cluster initiation. Additional observations 
were made to include the periods required to obtain 
visible, fully formed seed, for a total of seven stages. 
Briefly, the stages were Bolting 1 from inflorescence 
emergence up to 25 mm in length (equivalent to Eguchi 
and Ichikawa Stages 1 to 3, where 1 = flower cluster ini-
tiation stage, 2 = flower cluster differentiation stage, and 
3 = flower cluster formation stage) (Eguchi and Ichikawa, 
1940; Kim et al., 2000); Bolting 2, peduncle elongation to 
>25 mm; Bolting 3, formation of immature florets; Bolt-
ing 4, floret opening; Bolting 5, full flowering, Bolting 6, 
pollen (males) or mature stigmas (females) visible (Sherry 
et al., 1993); and Bolting7, visible seed formation. The 
DAS to the observation date for each stage was recorded. 
Observations were recorded for each of the three repli-
cates during two seasons when at least 50% of the male 
or female plants in each field plot reached each stage. 
For association studies, the stages were consolidated by 
averaging the DAS to Bolting 1 and Bolting 2 into early 
bolting (DASbolt); Bolting 4, Bolting 5, and Bolting 6 into 
pollination (pollen maturation and pollen shedding, 
DASpol); and Bolting 7 as the late bolting stage (seed ker-
nel filling, DASkf). All the UAS-imputed and in situ visu-
alization data are included in Supplemental Table S2.

Tissue Collection and DNA Isolation
Tissues from 10 plants per accession were pooled, lyophi-
lized, ground into a fine powder, and stored at –80°C. 
Genomic DNA was extracted from ~50 mg of lyophilized 
leaf tissue via the cetyl trimethylammonium bromide 
method described by Hoisington et al. (1994). DNA con-
centration and purity were estimated using a NanoDrop 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA). The DNA samples were subjected to electrophore-
sis in a 0.8% agarose gel to confirm their integrity prior 
to sequencing.

Variant Calling and Genotyping
Genotyping was performed following the ddRADseq 
genotyping-by-sequencing protocol (Peterson et al., 
2012). Illumina short-read sequencing (HiSeq 2500, 
Illumina Inc., San Diego, CA) and demultiplexing with 
individual indexes were performed by the Texas A&M 
AgriLife Genomics and Bioinformatics services. The 
paired-end raw sequencing reads (150 bp) were subjected 
to filtering to obtain high-quality reads for downstream 
analysis. Raw reads were filtered and trimmed for adap-
tor contamination and low-quality, ambiguous, and 

Fig. 1. Growth modeling of spinach using the unmanned aircraft 
system (UAS). (A) Ground image of field plots; (B) a series of ortho-
mosaic aerial images from the UAS; (C) zoomed image showing 
replications and plot grids; (D) graph fitting canopy cover (one of six 
traits phenotyped by the UAS).
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uncalled nucleotide sequences. Sequence reads contain-
ing >5% uncalled bases and average quality scores of ≤20 
were discarded. Filtering and trimming of the raw reads 
were performed with an in-house pipeline developed 
via Python programming (Python Language Refer-
ence version 2.7, Python Software Foundation; http://
www.python.org, accessed 28 June 2019) (Bedre et al., 
2015; Python Core Team, 2015). High-quality cleaned 
sequence data were aligned to the draft spinach reference 
genome (Version 1) (Xu et al., 2017) with the Bowtie2 
alignment tool (Langmead and Salzberg, 2012).

The 284 spinach accessions were genotyped with 
Stacks (Version 1.48) (Catchen et al., 2013; Rochette 
and Catchen, 2017) on the basis of the available spinach 
reference genome (Version 1) (Xu et al., 2017). In brief, 
various modules of the Stack pipeline (pstacks, cstacks, 
sstacks, and rxstacks) were used to identify and filter the 
genotypes (Catchen et al., 2013). The Ada cluster from 
the Texas A&M University High Performance Research 
Computing (http://hprc.tamu.edu/, accessed 18 June 
2019) was used to perform the bioinformatics analysis. 
The SNP pipeline-end cleanup criteria also included 
removal of SNPs not anchoring onto the six published 
draft chromosomes (Xu et al., 2017). A minimum minor 
allele frequency of >0.05 was used in this study. The 6167 
resulting biallelic SNPs in VCF file version 4.2 (Danecek 
et al., 2011) were used for downstream analyses. Geno-
typic data can be found in Supplementary Table S3.

Population Stratification and Kinship Analysis
To account for as much population stratification bias as 
possible, three different approaches were used to control 
for population structure: principal component analysis 
(PCA) (Wold et al., 1987; Endelman and Jannink, 2012), 
multidimensional scaling (MDS) (Zhu and Yu, 2009), 
and the allelic ancestry-based admixture model (Falush 
et al., 2007; Alexander et al., 2009). Given the multire-
gional origin of the spinach accessions used in this study, 
PCA with five principal columns was used to account for 
any continuous spatial genetic variation that might show 
when the genotypes were separated by continent (Endel-
man and Jannink, 2012). This step aimed to removing 
patterns that did not reflect specific genetic drift events, 
thus helping correct for continuous population struc-
ture in this association study. Genotypes were filtered to 
eliminate monomorphic markers, and missing genotypes 
were imputed after numericalization as described in 
Endelman and Jannink (2012). The MDS was estimated 
with a genetic distance matrix based on the 6167 SNPs; 
missing genotypes were excluded without imputation.

We also used identity-by-state similarity, which 
assumes that two random alleles drawn from the same 
locus are the same. The distance of an individual from 
itself was set to 0. An admixture model was computed 
with STRUCTURE (Version 2.3.4) (Pritchard et al., 2000). 
STRUCTURE was run at 1000 burn-ins and 15 replica-
tions on all 6167 SNPs for each K (i.e., the number of the 
number of computation clusters) value from 1 to 12. The 

1 to 12 K range was based on an assumed regional genetic 
pool from which the mapping collection was drawn (Sup-
plemental Table S1). The optimal K of population structure 
(Q) was estimated using the Evanno method (Evanno et 
al., 2005). Briefly, to identify the most likely K value, we 
examined the rate of change (ΔK) in likelihoods between 
adjacent K values. To do this, we first determined the pro-
portion of each subpopulation assigned to each cluster to 
identify the run with the highest log-likelihood among 
runs for the best K value. The optimal ΔK was used to 
determine the subgroup membership of each accession by 
10,000 iterations for each K from 2 to 12.

The graphics were visualized in STRUCTURE HAR-
VESTER (Earl and vonHoldt, 2012), which also applies the 
CLUMPP algorithm (Jakobsson and Rosenberg, 2007) for 
label switching. A tree representing the genetic distances 
among K clusters was constructed with the NEIGHBOR 
program, which applies the neighbor-joining algorithm 
(Saitou and Nei, 1987) to the matrix of allele-frequency 
divergence among K clusters. The plot was produced by 
DRAWTREE in the PHYLIP package (Felsenstein, 1989). 
To account for possible hidden allele sharing (Blouin, 
2003) that may bias associations within the study, a 
population cluster’s kinship matrix (k) was implemented 
under the nonshrunk (Bradbury et al., 2007) context of a 
realized relational matrix (Endelman and Jannink, 2012), 
as the number of markers was greater than the number 
of individuals genotyped. The genotypes were imputed 
prior to calculating kinship using the numerical genotype 
method (Endelman and Jannink, 2012).

Genome-Wide Association Study
We used TASSEL Version 5.2.2 (Bradbury et al., 2007) 
(version released 1 July 2017) to implement four mixed 
linear model (Zhang, 2010) regression approaches for 
quantitative traits. The statistical hypothesis H0 (no 
association with the phenotype) was tested for each SNP 
and each trait–marker combination for all 6167 mark-
ers. We applied compression on the Q + k, PCA + k, and 
MDS + k models, and compression on Q + k on a per 
marker estimate (Q + k Per Marker) model. The Q, PCA, 
and MDS were treated as covariates and the k (kinship) 
matrix as the random coefficient. With compression and 
the previously determined default population parameters 
(P3D), the dimensionality of k and computational time 
are reduced and model fitting improves (Bradbury et al., 
2007). We used MDS and PCA to test the markers from 
a purely population genetic distance model and from a 
purely statistical approach, respectively. The P3D were 
not implemented for the Q + k per marker mixed linear 
model, which allowed each taxon to belong to its own 
group and allowed us to test each marker independently 
with each of the nine traits. This also allowed for the esti-
mation of genetic and residual variance for each marker.

For the models run on the P3D, the genetic and resid-
ual variances were estimated at the trait level. Effects were 
determined for each marker, independent of the compres-
sion model. For each compression level, likelihood, genetic 

http://www.python.org
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variance, and error variance were determined and the 
compression level with the lowest value of –2Ln-likelihood 
for each trait–compression combination (Supplemental 
Table S4) was used to test the markers.

Genome-wide significance thresholds were deter-
mined for each trait–marker combination via the 
Benjamini–Hochberg false discovery rate method 
(Benjamini and Hochberg, 1995) at α = 0.05 for critical 
P-values of 1.60 × 10–4 for CCmax, 4.60 × 10–5 for CVolmax, 
2.47 × 10–5 for EXGmax, 2.6 × 10–4 for DASCC, 1.05 × 10–4 
for DASCVol, 2.6 × 10–4 for DASExG, 1.69 × 10–4 for DASbolt, 
1.38 × 10–4 for DASpol, and 1.38 × 10–4 for DASkf. Markers 
not meeting the cutoffs were not considered to be associ-
ated with the traits under study. Manhattan plots were 
drawn with the qqman R package (Turner, 2014).

Linkage Disequilibrium and Linkage Disequilibrium Decay
To determine the extent of linkage disequilibrium (LD), 
LD decay, and LD blocks across the genome, we used TAS-
SEL Version 5.2.2 to examine the 6167 markers used in this 
study (with a sliding window size of 500 and 29,582,250 
comparisons), then a random 1000 markers (a sliding win-
dow size of 100 and 72,640 comparisons) and another ran-
dom subset of 100 markers (a sliding window size of 40 and 
3430 comparisons). Heterozygotes were set to missing, LD 
was estimated as squared allele frequency correlations (r2); 
LD decay was calculated on the basis of the correlation coef-
ficient (r2) and displayed with P-values and positional infor-
mation. We compared these results with the LD results that 
used the 99 markers with significant association signals (LD 
was determined with a sliding window size of 50 and 4525 
comparisons). The extent of LD, LD decay, and LD blocks 
were strikingly similar in all four sets. The LD map plots 
were displayed with LDplot in TASSEL Version 5.2.2. Allele 
phasing was not performed for the markers in LD.

Heritability Analysis and Variant (SNP) Effects
We used the restricted (residual) maximum likelihood to 
decompose the variance components on the phenotypic 
data with both the lines (accessions) and replicates (with 
blocks nested within replicates) treated as random effects 
in a full factorial regression to the mean. The best linear 
unbiased prediction method was used to obtain point 
estimates of these random effects in a mixed effect model 
in JMP Version 14.0 (SAS Institute, Cary, NC). Point pre-
diction estimates were generated for each line. The best 
linear unbiased predictions have minimum mean squared 
error and thus provide the average value of the estimates, 
which is close to the mean linear function of the data 
(Robinson, 1991). We used correlation analysis to test the 
relationship between the predicted and the observed (or 
imputed) (Bernardo, 1996) values of the nine traits.

Broad-sense heritability (H2) was on a line-mean 
basis, with replicates nested in three blocks in a single 
location [Eq. 1]:
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where Vl is the variance within a line, r is the replicate, 
and e is the residual; these are divided by the replicates 
nested in three  blocks.

Narrow-sense heritability (h2) was calculated for 
each marker from the outputs of the Q + k Per Marker 
model parameters. Per-trait h2 was obtained from the 
mean genetic variance and the mean residual variance 
from the compression models as follows:
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where σ2
a is the additive variance of the marker allele and 

σ2
e is the variance of the residual (error). For each com-

pression level, the likelihood, genetic variance, and error 
variance were determined. Marker effects (dominance 
and additive for each marker) estimated by each of the 
four GWAS models were tested at α = 0.05.

Polymorphic Variants and Genomic Gene  
Context Assignment
In silico analysis of the tag SNPs was used to locate 
genomic features anchored in the draft spinach reference 
genome. Only markers showing insignificant LD decay 
and that met the significance thresholds in the GWAS 
were used. Putative functional annotations were deter-
mined through BLAST searches in SpinachBase (www.
spinachbase.org, accessed 18 June 2019) and Gramene 
BLAST (http://www.gramene.org, accessed 18 June 2019). 
For the purpose of this study, the gene at the association 
site itself was reported. However, when no anchor gene 
on the associated site was identified, the gene within 200 
kb upstream or downstream of the site was reported, 
since is possible that the SNP markers cosegregated with 
genes hundreds of kb apart (Meuwissen et al., 2014).

RESULTS
Phenotypic Distribution and Correlation among Traits
An autonomous aircraft vehicle equipped with an RGB 
sensor captured field images of 284 spinach accessions in 
three replications over a ~12-wk period (Fig. 1). Canopy 
volume, CC, and ExG values were estimated from ortho-
mosaic images and fitted to univariate third-level poly-
nomial functions, as shown in Fig. 1b. The coefficients 
of determination (r2) averaged 0.87 ± 0.09 for CVol, 
0.88 ± 0.11 for CC, and 0.94 ± 0.17 for ExG. The maxi-
mum crop growth values during the season (CVolmax, 
CCmax, and ExGmax) and DAS to reach the phenotypic 
maximum values (DASCVol, DASCC, and DASExG) were 
determined for each spinach accession and replication. 
The CVolmax, ExGmax, and CCmax values showed a normal 
distribution (Shapiro–Wilk test), whereas the associated 
DAS values did not (Fig. 2). The phenotypic variance for 
estimated maximum plant growth parameters ranged 
from 0.0004 for ExGmax (mean = 0.3) to 0.026 for CCmax 
(mean = 59.48%) and 0.026 for CVolmax (mean = 0.08 
m3). Ground-based data associated with flowering and 

www.spinachbase.org
www.spinachbase.org
http://www.gramene.org
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seed development such as DASbolt, DASpol, and DASkf 
were visually collected and were skewed toward days of 
advanced plant development (Fig. 2). Their variance was 
the highest observed out of the nine traits measured.

Correlations between CCmax and CVolmax (r = 0.67), 
CCmax and ExGmax (r = 0.95), CVolmax and ExGmax 
(r = 0.68), and DASCV and DASExG (r = 0.40) were signifi-
cant at α = 0.05 (Table 1). The rest of the UAS-collected 
variables did not show significant correlations. For the 
manually phenotyped flowering and seed development 
stages, there were strong correlations between DASbolt 
and DASpol (r = 0.85), DASbolt and DASkf (r = 0.76), and 

DASpol and DASkf (r = 0.88). The correlations between the 
UAS-based data and the ground bolting data were tested 
but found to be nonsignificant. Because of the significant 
correlations between some traits, we tested collinear-
ity by determining the VIF (Table 1) of their bivariate r2 
(Lipovetsky and Conklin, 2001; Kock and Lynn, 2012). 
The VIF estimates how much the variance of a coefficient 
of correlation is inflated (Allison, 1999). As recommended 
by O’Brien (2007), we used multicollinearity testing to 
account for the effect of population size on variance infla-
tion. No collinearity was found between variables, except 
for ExGmax and CCmax (r = 0.95, VIF = 9.72776).

Fig. 2. Distribution of raw phenotypic means. Maximum seasonal values for spinach canopy cover (CCmax), canopy volume (CVolmax), and excess 
greenness index (ExGmax); days after sowing to maximum seasonal values of canopy cover (DASCC), canopy volume (DASCVol), and excess greenness 
index (DASExG); and days after sowing for manually collected plant bolting stages: early bolting (DASbolt). pollination (DASpol), and kernel filling (DASkf).

Table 1. Correlation coefficients† and variance inflation factors (VIF)‡ among traits.

CCmax¶ DASCC CVolmax DASCVol ExGmax DASExG DASbolt DASPol DASkf

CCmax – 1.00107 1.79321 1.01177 9.72776§ 1.00076 1.00031 1.00556 1.01348
DASCC –0.03 – 1.00005 1.00058 1.00042 1.00025 1.00238 1.00304 1.00019
CVolmax 0.67* –0.01 – 1.04629 1.87938 1.00000 1.00000 1.00148 1.00183
DASCVol 0.11 –0.02 0.21 – 1.00399 1.18760 1.01000 1.00085 1.00030
ExGmax 0.95* –0.02 0.68* 0.06 – 1.00558 1.00040 1.00323 1.01016
DASExG –0.03 –0.02 0.00 0.40* –0.07 – 1.00017 1.00000 1.00010
DASbolt 0.02 0.05 0.00 0.10 0.02 0.01 – 3.70100 2.35319
DASPol –0.07 0.06 –0.04 –0.03 –0.06 0.00 0.85* – 4.50986
DASkf –0.12 –0.01 –0.04 –0.02 –0.10 –0.01 0.76* 0.88* –
* Significant at the 0.05 probability level.

† Correlation coefficients are shown in the lower triangle.

‡ VIFs are shown in the upper triangle.

§ Significant collinearity at a tolerance level of 0.25.

¶ CCmax, maximum canopy cover; CVolmax, maximum canopy volume; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASCVol, days after sowing until 
maximum canopy volume; DASExG, days after sowing until maximum excess greenness index; DASPol, days after sowing until pollination; DASkf, days after sowing until kernel filling; ExGmax, maximum excess 
greenness index.
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Single Nucleotide Polymorphism Density  
and Population Structure
At the genome level, we determined the total number of 
SNPs discovered per chromosome (chr) and their densi-
ties. Chromosome 4 had the highest number of SNPs dis-
covered, whereas chr1, chr2, and chr3 had intermediate 
SNP counts and chr5 and chr6 had the lowest number of 
SNPs identified (Table 2). However, when we compared 
the corresponding physical genomic stretch spanned (bp 
for every SNP), chr1 had the greatest SNP density, fol-
lowed by chr6 and chr2 (Table 2). We used the SNP allele 
distribution to determine the population structure of the 
spinach panel. The admixture model grouped the 284 
accessions into five population clusters (k = 5), based on 
the highest Δk (Fig. 3).

Significant Markers, Marker Effects, and Heritability
In this study, associations based on the P-value of the 
F-test for the model were called when the Benjamini–
Hochberg correction cutoff was met. We used P < 0.05 
for the F-test for the additive model and for the F-test for 
dominance after fitting the additive model to test the sig-
nificance of the additive and dominance effects, respec-
tively. We determined heritability (H2) on the basis of 

the line mean and the marker effects, and per significant 
marker h2 (Table 3-7).

Ninety-nine SNPs were significantly associated with 
measured spinach growth parameters (Fig. 4, Table 4-7). 
Of these, 56% were associated with the UAS-generated 
traits; the rest (44%) were associated with the visually 
collected traits (Table 4-7). All identified UAS trait mark-
ers were associated with DAS variables except CCmax, for 
which the markers 42970_33, 42970_120, and 42970_132 
were identified (Table 4-7). These CCmax–associated 
makers are substitution polymorphisms <55 bp apart, 
consecutively on the same gene (i.e., Spo18796, with the 
locus segment type given in parentheses): A-G (exon), 
A-G (intron), and T-A (intron), respectively. Their effect 
alleles were G (additive), G (additive + dominance), and 
A (additive) (Table 4-7). These observations suggest that 
the three CCmax–associated SNP variants may be nonsyn-
onymous. On the basis of a similar test criterion, other 
marker clusters in Table 4-7 may be classified. However, 
this conclusion may require follow-up studies to deter-
mine which amino acid residues are affected by the base 
changes, as well as the effect of those changes on the 
function of the translated protein.

Only a single locus colocalization was identified 
between markers associated with the manually collected 
traits during bolting and the markers associated with crop 
growth traits derived from UAS phenotyping. The marker 
42970_31 (Position 34,290,002) for DASpol and the three 
markers 42970_33, 42970_120, and 42970_132 42970_ 
(positioned between 34,290,043 and 34,290,103) for CCmax 
colocated at the gene level on Spo18796, which is a tran-
scription factor jumonji domain on chr6, suggesting that 
these markers may interact epistastically to affect the pos-
sible pleiotropic nature of Spo18796 in the two traits.

In general, with a few exceptions, h2 on a trait-mean 
basis was higher for the visually (manually) collected 
traits than for the UAS-generated data in all the models. 

Fig. 3. Population structure estimates via the admixture model for the 284 spinach accessions. (a) Likelihood estimate plot showing the number of 
genetically distinct clusters (K) for the 284 accessions. (b) Single-line estimates of genetically distinct clusters. Colors (red, yellow, pink, green, and 
blue) represent the five estimated population clusters used in this study. The horizontal axis shows the individuals genotyped and the vertical axis 
represents the allelic proportions defining the position in the cluster. (c) Representation of the average genetic distances among K clusters.

Table 2. Single nucleotide polymorphism (SNP) discovery rate as a 
function of SNP density relative to the physical distance spanning 
the mapped region of each chromosome.

Chromosome SNPs Physical length spanned SNP† discovery rate per chromosome 
n bp bp per SNP

1 1027 50,544,189 49,215.4
2 1027 60,452,741 58,863.4
3 1060 112,131,948 105,784.9
4 1458 122,918,674 84,306.4
5 757 69,232,026 91,455.9
6 838 46,051,220 54,953.7
† Filtered SNPs.
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For example, the combined mean h2 for the UAS-imputed 
traits were 27.8, 43.2, 53.4, and 37.0%, whereas those for 
the manually determined traits were 71.4, 70.5, 65.9, and 
74.3% from the models Q + k Per Marker, Q + k, MDS 
+ k, and PCA + k, respectively. The mean H2 values on 
a line-mean basis were much lower for both the UAS-
imputed and manually determined traits at 3.10% (mean 

R2, 0.08; CV, 3.35%) and 5.15% (R2, 0.13; CV, 1.92%), 
respectively (Table 3). To achieve an experimental power 
of at least 0.8, assuming we had targeted H2 of 0.75 for 
each of the traits at α = 0.05 (two-tailed) at the low R2 of 
0.08 (as in our results above) and a Type II error rate (β) 
of 0.2, the effective population size would be at least 194 
accessions (plots). Since we tested 284 accessions, the 

Table 3. Trait heritability calculated via the four association models.

Trait
Model statistics† Line mean basis (REML) Per marker basis (GWA) Per trait basis (GWA)

Least square mean R2 CV H2 h2 (Q + k Per Marker)‡ h2 (Q + k)§ h2 (MDS + k)§ h2 (PCA + k)§
CCmax¶ 59.09 0.132 6.21 0.0173 0.166 0.163 0.529 0.168
CVolmax 0.08 0.069 1.44 0.0936 0.513 0.503 0.641 0.530
ExGmax 0.32 0.098 8.04 0.0019 0.211 0.194 0.580 0.270
DASCC 87.40 0.036 0.97 0.0000 0.489 0.459 0.421 0.533
DASCVol 93.42 0.153 2.53 0.0700 0.013 1.000 0.471 0.437
DASExG 86.35 0.018 0.34 0.0009 0.277 0.278 0.565 0.283
DASbolt 84.71 0.002 0.60 0.0704 0.899 0.898 0.740 0.905
DASPol 86.86 0.134 2.87 0.0808 0.481 0.446 0.641 0.552
DASkf 90.95 0.128 2.30 0.0034 0.764 0.772 0.596 0.776
† Restricted (residual) maximum likelihood (REML) or its components.

‡ Compression model with variance components estimated for each marker separately.

§ Models used to calculate single compression mean genetic variance and single compression mean residual variance on a trait basis. 

¶ CCmax, maximum canopy cover; CVolmax, maximum canopy volume; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASCVol, days after sowing until 
maximum canopy volume; DASExG, days after sowing until maximum excess greenness index; DASPol, days after sowing until pollination; DASkf, days after sowing until kernel filling; ExGmax, maximum excess 
greenness index; GWA, genome-wide association; H2, broad-sense heritability; h2, narrow-sense heritability; k, kinship matrix; MDS, multidimensional scaling; PCA, principal component analysis; Q, the number of 
computation clusters with a list of genetic distance probabilities for each accession in the population.

Table 4. Markers meeting the significance threshold in the Q + k model (per trait estimate). 

 
Trait

 
Markers

Representative  
marker

 
Chromosome

Position  
and/or range

Q + k 
Add.† P-value Dom. P-value R2

n
DASCC 10 38939_110 5 2,811,551–2,811,739 0.17851 1.48E-06 –0.17839 4.47E-06 0.088

1 19651_36 1 3,846,589 0.13640 2.14E-05 –0.11631 6.21E-04 0.081
1 17771_95 1 12,969,303 –0.21635 1.67E-05 –0.20997 1.04E-04 0.068
2 38455_121 5 21,285,477–21,285,566 0.17858 1.49E-06 –0.16772 1.32E-05 0.090
1 44084_132 6 43,509,344 0.11502 9.24E-05 –0.12028 7.07E-05 0.072
1 36324_127 4 80,322,196 –0.22792 6.30E-06 –0.18268 4.27E-04 0.102

DASCVol 2 31710_51 4 10,286,541–10,286,542 1.33003 1.79E-05 –1.40687 9.78E-06 0.075
1 26862_9 3 15,991,151 –0.77364 1.94E-05 –0.81840 3.42E-05 0.070
3 27988_137 3 34,577,820–34,577,828 –1.37576 1.01E-05 –1.34997 1.83E-05 0.080
1 22953_48 2 36,249,915 1.33259 2.04E-05 –1.39706 2.30E-05 0.075
1 44035_122 6 43,347,813 0.89791 4.17E-07 –1.08089 4.47E-08 0.114
1 44180_7 6 44,500,215 –1.30507 2.43E-05 –1.46595 4.02E-06 0.080
1 34883_38 4 51,195,861 0.54333 2.43E-05 –0.40724 6.86E-03 0.073
1 24363_107 2 51,681,433 0.64229 3.74E-05 –0.57303 4.08E-03 0.071
1 29971_66 3 70,498,159 –0.64269 4.38E-06 –0.62923 8.85E-05 0.082

DASExG 1 40827_128 5 7,581,055 0.02778 1.73E-05 –0.03089 3.96E-06 0.080
1 34151_101 4 29,043,034 0.01501 5.56E-06 –0.01512 2.38E-05 0.83
1 19887_120 1 40,388,453 –0.03043 2.22E-06 –0.02856 1.86E-05 0.085
1 20358_139 1 44,357,800 0.03056 2.64E-06 –0.02740 3.32E-05 0.111
1 36231_148 4 78,521,968 –0.02429 8.80E-08 –0.02156 2.35E-05 0.114
1 26106_55 3 102,662,772 0.03053 2.35E-06 –0.02952 5.83E-06 0.089

DASbolt 1 36822_84 4 88,252 0.02191 2.24E-05 –0.02012 5.57E-04 0.200
1 26785_87 3 1,532,247 0.02203 1.48E-05 –0.01458 3.61E-03 0.214
1 30014_141 3 7,122,451 –0.02087 1.41E-05 –0.01949 9.06E-04 0.210

† Add., additive effect; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASCVol, days after sowing until maximum canopy volume; DASExG, days after sowing until 
maximum excess greenness index; Dom., dominance effect; k, kinship matrix; Q, cluster of genetic distance probabilities for each accession in the population; R2, phenotypic variance explained by the effect model.
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Table 6. Markers meeting the significance threshold in the PCA + k model (per trait estimate). 

 
Trait

 
Markers

Representative 
marker

 
Chromosome

Position  
and/or range

PCA + k
Add.† P–value Dom. P–value R2

n
DASCC 10 38939_110 5 2,811,551–2,811,739 0.17299 1.99E-06 –0.17128 8.01E-06 0.084

2 38455_121 5 21,285,477–21,285,566 0.17124 2.58E-06 –0.15882 2.72E-05 0.085
1 36324_127 4 80,322,196 –0.22295 7.26E-06 –0.18143 3.81E-04 0.095

DASCVol 1 44035_122 6 43,347,813 0.91678 6.35E-06 –1.09051 1.14E-06 0.116
DASExG 1 40827_128 5 7,581,055 –0.02451 8.58E-08 –0.02132 2.73E-05 0.115

1 40828_107 5 7,581,143 –0.02796 2.40E-05 –0.02894 1.70E-05 0.070
1 34151_101 4 29,043,034 0.02779 2.60E-05 –0.02916 1.92E-05 0.070
1 19887_120 1 40,388,453 –0.02960 3.49E-06 –0.02717 4.16E-05 0.083
1 43709_72 6 40,598,206 –0.02829 1.61E-05 –0.03038 1.19E-05 0.073
1 20358_139 1 44,357,800 0.02962 4.23E-06 –0.02634 5.39E-05 0.108
1 44281_23 6 45,342,253 0.02867 1.42E-05 –0.02748 4.63E-05 0.070
1 24160_135 2 50,245,050 –0.02897 1.05E-05 –0.02566 1.67E-04 0.076
1 36231_148 4 78,521,968 0.01485 4.83E-06 –0.01480 3.00E-05 0.084
1 26106_55 3 102,662,772 0.02984 3.27E-06 –0.02860 9.45E-06 0.087

DASbolt 1 26785_87 3 1,532,247 0.02779 2.30E-05 –0.03096 4.95E-06 0.079
DASPol 1 42970_31 6 34,290,002–34,290,103 0.52472 1.21E-04 –0.33108 2.93E-02 0.062

† Add., additive effect; DASPol, days after sowing until pollination; DASCC, days after sowing until maximum canopy cover; DASCVol, days after sowing until maximum canopy volume; Dom, dominance effect; DASExG, days 
after sowing until maximum excess greenness index; DASbolt, days after sowing until early bolting; k, kinship matrix;  PCA, principal component analysis; R2, phenotypic variance explained by the effect model.

Table 5. Markers meeting the significance threshold in the MDS + k model (per trait estimate). 

 
Trait

 
Markers

Representative 
marker

 
Chromosome

Position  
and/or range

MDS + k
Add.† P-value Dom. P-value R2

n
DASCC 10 38939_110 5 2,811,551–2,811,739 0.18331 5.94E-06 –0.17897 1.79E-05 0.078

1 19651_36 1 3,846,589 0.14825 1.75E-05 –0.13275 1.92E-04 0.090
2 38455_121 5 21,285,477–21,285,566 0.18245 6.06E-06 –0.17105 4.21E-05 0.081
1 22984_88 2 36,778,324 –0.99955 2.72E-05 –1.16185 1.07E-05 0.161
1 36324_127 4 80,322,196 –0.22762 3.18E-05 –0.18999 6.86E-04 0.082

DASExG 6 29372_33 3 5,889,084–5,889,263 –0.02973 4.58E-06 –0.03112 7.09E-06 0.079
1 40827_128 5 7,581,055 0.02941 5.78E-06 –0.03284 1.10E-06 0.088
1 34151_101 4 29,043,034 0.01551 4.13E-06 –0.01598 1.23E-05 0.084
1 19887_120 1 40,388,453 –0.03085 2.78E-06 –0.03001 1.13E-05 0.081
1 43709_72 6 40,598,206 –0.02969 4.71E-06 –0.03105 5.41E-06 0.078
1 20358_139 1 44,357,800 0.03158 2.27E-06 –0.02866 2.35E-05 0.109
1 44261_56 6 45,192,349 0.02986 4.06E-06 –0.03088 7.13E-06 0.079
1 44291_137 6 45,352,029 –0.03041 3.01E-06 –0.02822 2.28E-05 0.092
1 28665_72 3 46,395,669 –0.03009 3.47E-06 –0.02688 7.51E-05 0.083
1 36231_148 4 78,521,968 –0.02403 1.98E-07 –0.02076 5.45E-05 0.109

DASbolt 1 36822_84 4 88,252 0.02100 4.84E-06 –0.01954 1.80E-04 –0.103
1 22357_36 2 27,309,513 0.00608 3.99E-02 0.00466 1.75E-01 0.090

DASPol 2 37716_63 5 11,878,605–1,187,606 –1.02884 1.41E-05 –0.93074 1.43E-04 0.142
1 39553_80 5 40,016,005
2 43868_4 6 42,083,968–42,084,406 –0.24693 1.30E-04 –0.34147 8.62E-05 0.146

DASkf 1 28312_106 3 4,026,915 0.27098 5.65E-05 0.20419 1.81E-02 0.068
2 35474_60 4 6,325,624–6,325,642 –1.26120 6.40E-05 –1.44458 9.38E-06 0.076
1 34672_102 4 46,706,902 0.79822 2.16E-06 –1.00418 1.35E-07 0.104
1 30538_30 3 83,500,450 0.16537 1.52E-05 –0.15352 3.36E-04 0.072
1 32020_29 4 107,271,059 0.05712 1.28E-04 –0.01268 4.76E-01 0.080
1 32388_65 4 114,173,692 0.06281 8.37E-05 –0.02055 2.66E-01 0.075

† Add., additive effect; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASExG, days after sowing until maximum excess greenness index; DASPol, days after 
sowing until pollination; DASkf, days after sowing until kernel filling; Dom., dominance effect; k, kinship matrix; MDS, multidimensional scaling; R2, phenotypic variance explained by the effect model.
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most likely cause of the lost heritability is the large con-
founding error variance (Zou and Zuo, 2006), as shown 
by the large coefficients of variation observed as being 
associated with the environmental effect.

Linkage Disequilibrium Decay Estimates

Of the 99 associated SNPs, 82 loci were in LD decay, 
including bolting and seed development-associated mark-
ers 36231_148 (chr4; DASkf) and 37180_66 (chr4; DASpol) 

Table 7. Markers meeting the significance threshold in Q + k models (per marker estimate). 

 
Trait

 
Markers

Representative 
marker

 
Chromosome

Position 
and/or range

Q + k 
Add.† P-value Dom. P-value R2 h2

n
CCmax 3 42970_120 6 34,290,044–34,290,103 0.16891 7.23E-06 –0.15721 1.79E-04 0.071 0.33
EXGmax 2 41834_137 6 21,986,964–21,990,581 –0.03267 2.91E-04 –0.02059 3.11E-02 0.188 1.00
DASCC 10 38939_110 5 2,811,551–2,811,739 0.17818 4.38E-07 –0.17797 1.51E-06 0.089 0.52

1 19651_36 1 3,846,589 0.13725 6.20E-06 –0.11655 2.80E-04 0.080 0.37
1 17771_95 1 12,969,303 –0.21605 8.64E-06 –0.20974 6.05E-05 0.069 0.51
2 38455_121 5 21,285,477–21,285,566 0.17759 4.66E-07 –0.16760 4.63E-06 0.093 0.57
1 22984_88 2 36,778,324 –1.00159 8.41E-06 –1.14877 4.31E-06 0.147 0.26
1 44084_132 6 43,509,344 0.11459 5.32E-05 –0.12070 3.58E-05 0.072 0.50
1 36324_127 4 80,322,196 –0.22742 1.41E-06 –0.18199 1.70E-04 0.104 0.54

DASCVol 2 31710_51 4 10,286,541–10,286,542 1.33003 8.66E-06 –1.40687 4.53E-06 0.075 0.00
1 26862_9 3 15,991,151 –0.77364 1.05E-05 –0.81840 1.92E-05 0.070 0.00
3 27988_137 3 34,577,820–34,577,828 –1.37576 3.87E-06 –1.34997 7.34E-06 0.080 0.00
1 22953_48 2 36,249,915 1.33259 1.45E-05 –1.39706 1.64E-05 0.075 0.00
1 44035_122 6 43,347,813 0.89791 8.90E-08 –1.08089 7.53E-09 0.114 0.00
1 44180_7 6 4,450,0215 –1.30507 1.17E-05 –1.46595 1.70E-06 0.080 0.00
1 34883_38 4 51,195,861 0.54333 1.54E-05 –0.40724 5.61E-03 0.073 0.00
1 24363_107 2 51,681,433 0.64229 1.42E-05 –0.57303 2.47E-03 0.071 0.00
1 29971_66 3 70,498,159 –0.64269 1.69E-06 –0.62923 4.34E-05 0.082 0.00

DASExG 6 29372_33 3 5,889,084–5,889,263 0.02888 2.82E-06 –0.03002 4.19E-06 0.079 0.13
1 40827_128 5 7,581,055 0.02880 2.84E-06 –0.03207 5.17E-07 0.090 0.11
1 40828_107 5 7,581,143 –0.02897 2.25E-06 –0.03000 2.49E-06 0.079 0.13
2 31191_149 3 9,539,283–9,539,285 0.02883 2.81E-06 –0.02997 4.15E-06 0.079 0.13
1 34151_101 4 29,043,034 0.01516 3.95E-06 –0.01532 1.78E-05 0.086 0.18
1 19887_120 1 40,388,453 –0.03058 7.07E-07 –0.02874 7.32E-06 0.087 0.19
1 43709_72 6 40,598,206 –0.02904 2.52E-06 –0.03069 2.55E-06 0.081 0.13
1 20358_139 1 44,357,800 0.03060 6.05E-07 –0.02744 1.02E-05 0.112 0.27
1 44261_56 6 45,192,349 0.02941 1.54E-06 –0.02926 5.23E-06 0.081 0.13
1 44281_23 6 45,342,253 0.02938 1.61E-06 –0.02840 9.51E-06 0.080 0.13
1 44291_137 6 45,352,029 –0.02900 2.34E-06 –0.02803 9.33E-06 0.086 0.17
1 28665_72 3 46,395,669 –0.00606 3.06E-04 –0.00709 1.94E-04 0.063 0.32
1 23822_144 2 47,797,116 –0.01898 1.80E-05 –0.01879 4.05E-05 0.066 0.24
1 24160_135 2 50,245,050 –0.02966 1.17E-06 –0.02643 3.47E-05 0.086 0.12
1 40520_4 5 63,027,301 0.01043 2.96E-05 –0.00990 6.73E-04 0.064 0.10
1 36231_148 4 78,521,968 –0.02439 9.70E-09 –0.02171 5.96E-06 0.118 0.17
1 26106_55 3 102,662,772 0.00911 1.45E-05 –0.00871 2.53E-04 0.072 0.17

DASbolt 1 36822_84 4 88,252 0.02189 3.02E-06 –0.02015 1.41E-04 0.200 0.84
1 26785_87 3 1,532,247 0.02231 9.44E-07 –0.01444 1.22E-03 0.222 0.64
1 30014_141 3 7,122,451 –0.02098 1.12E-06 –0.01985 1.50E-04 0.215 1.00
1 36995_21 4 9,056,952 –0.01453 1.75E-05 –0.01323 3.01E-04 0.193 0.75
1 18134_18 1 21,587,981 0.00658 2.04E-02 0.00271 4.18E-01 0.077 0.14
1 22357_36 2 27,309,513 0.00565 4.58E-02 0.00506 1.31E-01 0.086 0.24
1 22477_19 2 28,651,041 –0.02488 2.41E-05 –0.02386 1.54E-04 0.169 0.94
2 39130_111 5 30,116,760–30,216,896 0.01591 1.21E-06 –0.01294 1.00E-03 0.222 0.50
1 39815_64 5 43,754,662 –0.02237 1.08E-05 –0.02521 1.89E-05 0.202 0.58
1 39876_92 5 44,808,159 –0.01694 3.79E-03 –0.02851 4.92E-06 0.199 0.67
1 40099_56 5 50,109,435 –0.01866 7.86E-06 –0.01712 8.64E-03 0.186 0.28
2 32988_7 4 119,357,657–119,357,896 –0.00626 9.14E-02 –0.01871 2.78E-05 0.184 1.00

(cont’d)



12 of 19 the plant genome  vol. 12, no. 3  november 2019

and the CCmax growth-associated marker 42970_132. The 
rest of the markers, including markers 38940_6 (chr6; 
DAScc) and 30538_30 (chr3; DASkf) were above the LD 
decay threshold, representing LD block sizes of 27 and 
~132 kb, respectively, indicating that under our experi-
mental conditions, the UAS was able to detect phenotypic 
signals associated with traits across various LD blocks and 
in LD decay (Fig. 5). The LD block sizes ranged from 20 bp 
to as much as 120 Mb, suggesting that the spinach acces-
sions used in this study have undergone varying degrees of 
selection pressure over time, thus providing the possibility 
of large selective sweeps being available to move traits of 
interest into breeding materials.

Causative SNP-Associated Putative Genes  
and Genomic Features
We used the 99 associated SNP marker positions to query 
the genomic contexts of genes. The 99 SNPs are spread 
across 69 genes. Of these markers, 53 are on the leading 
strand, though the majority (51%) are harbored in the non-
coding intronic regions and 27% in the exons. The rest are 
located in the intergenic regions, 19% within 100-kb gene 
proximity and the other 5% outside at least 200 kb but 
within 850 kb (Table 8). Six of these SNPs are located in 
segments that are important for the transcriptional regula-
tion of multiple genes implicated in the regulation and sig-
naling of important growth parameters. For example, the 
DASCC–associated SNP 36324_127 is located in Spo15232, 

which belongs to the basic leucine zipper transcription 
factor family proteins, members of which are involved in 
light and stress signaling influencing plant growth and 
development (Xiang et al., 2008). The marker 44291_137 
(chr6, Position 45,352,029) resides in an intronic segment 
of the gene Spo11400, which codes for cytochrome P450 
family protein, whose orthologs have been implicated in 
stay-green, photosynthesis, defense, and plant develop-
ment (Cooper, 2000; Xu et al., 2015; Awika et al., 2017).

DISCUSSION
Unmanned Aircraft System-Based Phenotyping  
can be Used to Develop Marker–Trait Associations 
across Different Modeling Methods
We tested the robustness of four compression models, with 
three models based on the P3D algorithm, which estimated 
the variance components on a trait basis (Q + k, PCA + k, 
and MDS + k), and one model (not implementing P3D) 
that estimated the variance components for each marker 
effect model (Q + k Per Marker). These models were used 
to evaluate the association between remotely sensed phe-
notypic signals and filtered SNP markers. Genome-wide 
association study models have been extensively evaluated 
in other studies (Korte et al., 2012; Yang et al., 2014a); the 
details are beyond the scope of the current study. Our 
preliminary observation is that in general, the trait-mean 
variance-based models Q + k, PCA + k, and MDS + k were 

Table 7. Continued.

 
Trait

 
Markers

Representative 
marker

 
Chromosome

Position 
and/or range

Q + k 
Add.† P-value Dom. P-value R2 h2

DASPol 2 37716_63 5 11,878,605–1,187,606 –1.00261 2.44E-06 –0.91319 3.71E-05 0.147 0.00
1 39553_80 5 40,016,005 –1.00527 4.88E-06 –0.92718 8.70E-05 0.130 0.13
2 43868_4 6 42,083,968–42,084,406 –0.31990 3.51E-06 –0.35847 1.05E-05 0.172 0.60
1 42970_31 6 34,290,002–34,290,103 –1.00683 8.93E-07 –0.86663 9.29E-05 0.155 0.00
1 20296_75 1 43,713,731 –0.11412 3.89E-05 0.03664 3.47E-01 0.084 0.97
1 23894_148 2 48,350,859 –0.05019 1.18E-01 –0.04262 1.84E-01 0.099 1.00
1 40125_127 5 50,582,753 –1.00450 3.80E-06 –0.92234 7.89E-05 0.133 0.08
1 40446_103 5 59,288,499 –1.00064 2.74E-06 –0.96605 1.31E-05 0.132 0.00
1 29529_92 3 62,540,090 –1.00398 2.34E-06 –1.12204 3.77E-06 0.137 0.00
1 37179_94 4 93,704,388 0.54122 1.00E-05 –0.54581 3.03E-05 0.137 0.26

DASkf 1 28312_106 3 4,026,915 –0.10500 1.13E-02 0.19638 2.86E-05 0.086 0.92
2 35474_60 4 6,325,624–6,325,642 0.14813 2.97E-22 0.16997 4.00E-21 0.317 1.00
2 37037_28 4 9,101,643 –0.14895 1.69E-12 0.17268 1.11E-15 0.307 0.99
1 41288_57 6 13,952,350 0.14635 2.85E-11 –0.15646 1.26E-14 0.305 0.99
1 42302_61 6 27,292,261 –0.02385 5.89E-02 0.05703 7.49E-26 0.125 1.00
1 28330_57 3 40,573,808 –0.10384 1.25E-02 0.19991 2.10E-05 0.087 0.92
1 39773_89 5 42,984,604 –0.09142 7.84E-03 0.16994 2.72E-05 0.092 0.94
1 39858_80 5 4,459,8648 –0.09142 7.84E-03 0.16994 2.72E-05 0.092 0.94
1 34672_102 4 46,706,902 0.10765 2.41E-04 –0.12735 4.19E-03 0.119 0.93
1 30538_30 3 83,500,450 0.06862 3.41E-02 0.17537 1.22E-04 0.095 0.93
2 25958_90 3 101,055,049 0.00291 1.11E-03 –0.00460 1.20E-05 0.066 0.23
1 32020_29 4 107,271,059 0.06685 9.16E-02 0.21706 2.27E-05 0.086 0.90
1 32388_65 4 114,173,692 0.15934 2.31E-13 0.10482 1.11E-03 0.229 0.99

† Add., additive effect; CCmax, maximum canopy cover; Dom, dominance effect; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASCVol, days after sowing 
until maximum canopy volume; DASExG, days after sowing until maximum excess greenness index; DASPol, days after sowing until pollination; DASkf, days after sowing until kernel filling; ExGmax, maximum excess 
greenness index; h2, trait mean narrow-sense heritability; k, kinship matrix; Q, cluster of genetic distance probabilities for each accession in the population; R2, phenotypic variance explained by the effect model.
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less conservative and returned higher mean h2 (43.2, 53.4, 
and 37.2%, respectively) across the UAS-derived traits than 
the Q + k Per Marker model (h2 ~27.8%, Table 3). There 
was no significant difference in the h2 of the manually 
quantitated traits. By contrast, at the marker level (Table 
4-7), the reverse was true for per-marker phenotypic vari-
ance explained (PVE), with the Q + k, PCA + k, and MDS 
+ k models being generally more conservative (lower but 
not significantly different mean R2 values of ~9.5, 8.3, and 
8.4 respectively) than the corresponding Q + k Per Marker 
model (mean R2 = ~11.7). We calculated per-marker h2 via 
the Q + k Per Marker model only. No specific pattern was 
detected for the effect sizes of additive and dominance 
effects across all models (Table 4-7). Although any of the 
methods would appear to suffice, the compression Q + k 
Per Marker model detected more significant association 
signals than the other models in the current study.

Unmanned Aircraft System and Visual Data  
GWAS Signals
We detected associated markers for four of the six UAS-
measured traits. Most of these associated markers were 
related to the DAS measurements (DASCVol, DASCC, and 
DASExG), whereas we only uncovered significant markers 
for one maximum growth variable (CCmax). Under the 
assumption that that SNP marker saturation on chromo-
somes was not a limiting factor, these results suggest that 
the DAS variables are more robust than the maximum 

value ones for detecting differences among accessions, 
perhaps because they are less affected by small changes 
in plant density (e.g., missing single plants within a plot). 
By contrast, the effect of missing plants may have had 
stronger effects on the maximum CC, CVol, and ExG 
measurements because of the small plot size used in this 
study. The use of larger plots with uniform planting den-
sities could potentially improve the chances of detecting 
additional marker–trait associations that we failed to 
detect in the present study.

On the other hand, analysis of the associated signals 
for the manually collected bolting-related measurements 
resulted in the identification of several significant mark-
ers at 13 loci for DASkf, 10 for DASpol, and 12 for DASbolt. 
Chitwood et al. (2016) identified three SNP markers 
related to bolting by using a similar population derived 
from the USDA-NPGS. However, those markers were 
not localized at the same loci as the markers identified 
in the current study, perhaps because environmental 
conditions such as photoperiod might have influenced 
the bolting rates at different locations (Chun et al., 2000). 
Interestingly, no correlation was observed between time 
to bolting stages and maximum plant growth (Table 1). 
Therefore, alternative UAS measurements need to be 
evaluated to screen accessions for bolting resistance.

Associated individual SNPs explained low levels of 
PVE (6.18–22.9%) across all mixed linear models (Table 
4-7). Low PVE has also been reported for GWAS of 

Fig. 4. Manhattan plots of association tests for 6167 markers and nine growth parameter traits. The vertical axes show negative log10P trans-
formed values of significance tests for each marker (one single nucleotide polymorphism = one dot). Chromosome designations are on the 
horizontal axis (six chromosomes, 1–6, harbored the SNP markers tested with each trait). The marker–trait association significance thresholds 
(based on Benjamini and Hochberg’s false discovery rate) are shown by the solid horizontal red lines.
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spinach as well as other plant and mammalian systems 
(Slatkin, 2008; Xu et al., 2017), which may be related to 
the high within-accession heterogenicity found in the 
USDA-NPGS collection (e.g., the open pollinated nature 
of spinach). However, the low threshold of associated tag 
SNPs might be validated at much higher significance lev-
els in follow-up studies. For example, Yeager et al. (2007) 
reported associated SNPs from initial GWAS at a P-value 
of only 0.042, although the significance dramatically 
increased in a follow-up study, with a P-value (above 
the Bonferroni threshold) of 7.31 × 10–13 (Thomas et al., 
2008). Therefore, marker validation must be performed 
before using these associated SNPs in marker-assisted 
selection programs.

Finally, on the basis of the marker information, we 
calculated the additive and dominance effects and h2 of 
each trait to determine the potential breeding value of 
selection for the plant growth parameters based on RGB 
sensor sensitivity. The line-mean heritability across the 
different models for UAS and visually collected traits was 
low (H2 ≤ 9.46%), indicating missing heritability, which 
is typical of many quantitative traits phenotyped in the 
field (Brachi et al., 2011). However, when we considered 

heritability on marker mean basis, h2 ranged from 
16.30% (CCmax, Q + k model) to as high as ~100% (CCmax, 
Q + k model).

The Detection of Large LD Blocks and Low Heritability 
Offers Insights into the Functionality of High-Throughput 
UAS Phenotyping in Spinach
Among the significantly associated markers, the con-
served LD blocks consisted of small physical distances of 
~20 bp to large sweeps of ~112 Mb (Fig. 5a). Some of these 
markers, their home chromosomes, and the trait with 
which they are associated (in parenthesis) are shown above 
the LD decay threshold in Fig. 5a, along with their relative 
physical positions in Fig. 5b. Some of the markers are asso-
ciated with UAS-imputed phenotypes (only one is shown 
in Fig. 5a because of the genomic segment selected in Fig. 
5b). This finding suggests that the few associated markers 
detected in the current study provide a good representa-
tion of LD blocks harboring possible causative (including 
small effect) variants, despite the low per-marker heritabil-
ity and PVE on most of these markers.

Fig. 5. Linkage disequilibrium (LD) and LD decay analysis of the 99 associated polymorphic variants. (a) The LD decay obtained from LD values 
of trait-associated sites, providing a measure of the average LD block sizes. The inner fitted trend line (thick black curve) is a nonlinear logarith-
mic regression curve of r2 on genetic distance. Linkage disequilibrium decay is considered to lie below the r2 = 0.1 threshold (cutoff, horizontal 
red line). Marker positions (diamond shapes) above the cutoff line are in LD. The blue arrows connect the marker positions on the LD decay plot 
(only a few marker identities are shown) to their corresponding chromosomal positions shown in the pairwise grid. For some of the markers, 
the traits with which they are associated (in parenthesis) are shown above the LD decay threshold. (b) Triangle plot for pairwise values (r2) plot-
ted against physical genomic distance between marker sites in a genome fragment harboring 57 of the 117 associated sites. The pairwise LD 
values of polymorphic sites are plotted on both the x- and y-axes. The r2 values are above the diagonal; the corresponding P-values are below 
the diagonal. Each cell represents a comparison of two pairs of marker sites and the cells are color-coded with respect to the presence of sig-
nificant LD. A colored barcode for the significance threshold levels in both diagonals is shown. Sites were selected on the basis of the strength 
of their association with the traits according to Benjamini and Hochberg’s false discovery rate (see Methods).
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The UAS-Mounted Sensor Captures Growth 
Phenotypes Associated with Candidate Tag SNPs

Several traits examined by our aerial phenotyping plat-
form were associated with tag SNPs in genes known to 
participate in important plant growth functions. Table 8 
provides a rich list of putatively involved genes that could 

be targeted in future functional analysis studies. For 
example, DASpol and CCmax were associated with the SNP 
loci 42970_31 (C-T, exon) and 42970_120 (A-G, intron). 
The markers are harbored only 89 bp apart on chr6. The 
makers 42970_73 (A/G, exon) and 42970_132 (T/A, intron) 
(Supplemental Table 3) are also significantly associated 

Table 8. Genomic context and resident genes harboring candidate single nucleotide polymorphisms (SNPs).

Trait Marker SNP alleles Chr Position Locus ID Segment type† Strand Annotation

CCmax‡ 42970_120 A G 6 34,290,091 Spo18796.1 Intron + Transcription factor jumonji (JmjC) domain protein

DASCC 38939_110 T C 5 2,811,505 Spo02370.1 Intron + NADH dehydrogenase (ubiquinone) flavoprotein 2

19651_36 G T 1 2,811,739 Spo03627.1 Intron + DNA repair protein RAD50, putative

17771_95 A G 1 12,969,303 Spo03824.1 Intron – IKI3 family elongator complex protein

38455_121 C A 5 21,285,477 Spo15202.1 Exon + UPF0503 protein At3g09070, chloroplastic (precursor)

22984_88 T C 2 36,778,324 Spo12315.1 Intron – Kinesin-like protein

44084_132 C A 6 43,509,344 Spo23411.1 Exon + Disease resistance protein

36324_127 A G 4 80,322,196 Spo15232.1 Intron + Basic leucine zipper transcription factor family protein

DASCVol 31710_51 G A 4 10,286,541 Spo14212.1 Intron – Transmembrane protein, putative

26862_9 C T 3 15,991,151 Spo10226.1 Exon – Flavin-containing monooxygenase (1.-.-.-)

27988_137 C G 3 34,577,827 Spo13590.1 ~20 kb down + Calcium-transporting ATPase (3.6.3.8)

22953_48 T C 2 36,249,915 Spo00454.1 Intron – Peptidyl-prolyl cis-trans isomerase (5.2.1.8)

44035_122 G A 6 43,347,813 Spo23418.1 Intron + Peroxidase (1.11.1.7)

44180_7 A C 6 44,500,215 Spo23246.1 ~3.4 kb up – Small ubiquitin-related modifier 

34883_38 T C 4 51,195,861 Spo11659.1 Intron – tRNA (guanine(37)-N1)-methyltransferase (2.1.1.228)

(M1G-methyltransferase) (tRNA [GM37] methyltransferase) (tRNA methyltransferase 5 homolog)

24363_107 G A 2 51,681,433 Spo23576.1 Exon + Giberellic Acid Insensitive (GAI), Repressor of GAI, and Scarecrow family transcription factor

29971_66 A G 3 70,498,159 Spo07147.1 Exon – Zinc finger family protein

DASexg 29372_33 G A 3 5,889,084 Spo02574.1 Intron – PP2A regulatory subunit TAP46-like protein

40827_128 G C 5 7,581,055 Spo25275.1 Exon + F-box protein interaction domain protein

31191_149 C A 3 9,539,283 Spo26660.1 Intron + γ-tocopherol methyltransferase

34151_101 T A 4 29,043,034 Spo00815.1 ~5 kb down + Chromatin assembly factor 1 subunit FAS1, putative

19887_120 A G 1 40,388,453 Spo10629.1 Exon + Tetraspanin family protein

43709_72 T C 6 40,598,206 Spo26018.1 Exon + Basic helix loop helix family transcription factor

20358_139 G T 1 44,357,800 Spo09940.1 Intron + Nuclear transport factor 2 family protein with RNA binding domain, putative isoform 1

44261_56 A G 6 45,192,349 Spo11356.1 ~400 bp up + Serine/threonine-protein kinase STE20, putative

44281_23 G T 6 45,342,253 Spo11398.1 Intron – Cytochrome P450, putative (1.14.13.88)

44291_137 T A 6 45,352,029 Spo11400.1 Intron – Cytochrome P450 family protein

28665_72 G A 3 46,395,669 Spo03641.1 Intron + DNA repair and recombination protein

23822_144 G T 2 47,797,116 Spo18839.1 Intron + Transducin/WD40 repeat-like superfamily protein

24160_135 A T 2 50,245,050 Spo01675.1 Intron – Arid/Bright DNA-binding domain,ELM2 domain protein, putative

40520_4 G T 5 63,027,301 Spo26541.1 ~810 kb down – Transmembrane protein, putative

36231_148 C T 4 78,521,968 Spo22543.1 ~16 kb up – MATE efflux family protein

26106_55 G C 3 102,662,772 Spo15533.1 ~80 kb up + Jasmonate-induced protein homolog

DASbolt 36822_84 G A 4 88,252 Spo16530.1 Exon + Zinc-binding protein

26785_87 T G 3 1,532,247 Spo12930.1 Exon – Protein Longifolia 2 (Protein TON1 Recruiting Motif 1)

30014_141 A T 3 7,122,451 Spo22366.1 Intron – DNA binding/transcription factor

36995_21 T A 4 9,056,952 Spo11986.1 201 bp down + Probable E3 ubiquitin-protein ligase ARI7 (6.3.2.-) (Ariadne-like protein ARI7) (Protein Ariadne homolog 7)

37001_48 T C 4 9,061,393 Spo12066.1 Intron – γ-tubulin complex component, putative

18134_18 C T 1 21,587,981 Spo02028.1 Exon + EEIG1/EHBP1 protein amino-terminal domain protein

22357_36 T A 2 27,309,513 Spo02637.1 Intron – Ankyrin repeat family protein

22477_19 A G 2 28,651,041 Spo15819.1 353 bp down – RNA-binding protein-related

39130_111 G T 5 30,216,896 Spo14477.1 Intron – Auxin-responsive family protein; Expressed protein;SAUR-like auxin-responsive protein

39815_64 G A 5 43,754,662 Spo06032.1 Intron – B3 domain-containing protein

39876_92 A T 5 44,808,159 Spo26692.1 Intron – BTB/POZ domain protein

40099_56 C T 5 50,109,435 Spo16236.1 ~6.2 kb up – Plant protein of unknown function (DUF641)

32988_7 C G 4 119,357,657 Spo19883.1 Intron + Glycosyl hydrolase family 10 family protein

(cont’d)
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with CCmax and are also a few bases from each of the other 
two previously mentioned, suggesting that this quantita-
tive trait locus plays a role in growth and reproduction 
(Fig. 5, Table 8). Indeed, these tag SNP are located within 
the gene Spo18796, encoding a transcription factor jumonji 
domain protein whose family members, such as Early 
Flowering 6, Relative Of Early Flowering 6, and Jumonji 
Domain Containing 5  play divergent roles in the regula-
tion of flowering and plant growth rhythm and tissue 
expansion (Noh et al., 2004; Jones et al., 2010).

The gene Spo11400, encoding a a cytochrome P450 
family protein (whose orthologs have been implicated in 
stay-green, photosynthesis, defense, and plant development) 
(Xu et al., 2015; Awika et al., 2017; Cooper, 2000) harbors 
the SNP marker 44291_137 (T-A; chr6, Position 45,352,029). 
This SNP may have a role in determining the timing of 
maximum greenness, as observed in the present study, indi-
cating the ability to phenotype accurately for greenness level 
in spinach with a UAS-mounted visible light sensor.

Another example is DASCVol was moderately associated 
with SNP 24363_107 (G-A; chr2), which is located in an 
exon of Spo23576, a Gibberellic Acid Insensitive, Repressor 
of Gibberellic Acid Insensitive, and Scarecrow transcrip-
tion factor; members of this family play important roles in 
gibberellin, jasmonate, and light signaling and influence 
plant growth and development (Zhang et al., 2012). Fur-
ther functional genomic analysis will be needed to validate 

the roles of these genes in plant growth and development. 
Functional analysis will need to be performed to determi-
nate the possible effects of these SNPs after transcription in 
the host amino acid residues’ polypeptides.

Aerial Imaging and Genomic Architecture Information 
can be Combined to Optimize Marker Development 
for Spinach Breeding
Determining whether the UAS captures useful pheno-
typic data for marker development to enhance spinach 
breeding is essential for exploring future applications 
and improvements to UAS-based phenotyping. Here, we 
used 6167 markers on chr1 to chr6 of the draft spinach 
reference genome. We then used the best linear unbiased 
predictions of plant growth spectral signals obtained 
with the UAS autonomous platform in conjunction with 
these SNPs to identify polymorphic variants with asso-
ciation signals that might warrant further investigation. 
We also mapped these markers to various genomic fea-
tures, such as proteins that affect leaf growth, chlorophyll 
content, and functionality and genes that affect plant 
height through cell elongation. This study is among the 
first to use high-throughput phenotyping via a UAS and 
high-throughput genotyping-by-sequencing of spinach. 
This study demonstrates the potential of using remote 
sensing platforms, image-analysis, and genotyping pipe-
lines to screen leafy green vegetables for traits of interest, 

Trait Marker SNP alleles Chr Position Locus ID Segment type† Strand Annotation

DASPol 37716_63 A T 5 11,878,605 Spo08215.1 ~6 kb up – Unknown protein

39553_80 C T 5 40,016,005 Spo15859.1 ~32 kb up – Gamete expressed 2

43868_4 C G 6 42,083,968 Spo09739.1 Intron – Bax inhibitor

42970_31 C T 6 34,290,002 Spo18796.1 Exon + Transcription factor JmjC domain protein

20296_75 G T 1 43,713,731 Spo07638.1 ~3.3 kb up – UDP glycosyltransferase

23894_148 C A 2 48,350,859 Spo00444.1 Exon + Histone h1/h5, putative

40125_127 C T 5 50,582,753 Spo04571.1 Intron + DNA polymerase III subunit γ/γ

40446_103 A G 5 59,288,499 Spo04785.1 ~532 kb up + Unknown protein

29529_92 A G 3 62,540,090 Spo05146.1 Intron + Hydroxyproline-rich glycoprotein family protein

37179_94 A G 4 93,704,388 Spo14170.1 ~14 kb down – Ethylene-responsive transcription factor, putative

DASkf 28312_106 A G 3 4,026,915 Spo16027.1 Exon – Multidrug resistance protein ABC transporter family

35474_60 T C 4 6,325,624 Spo15727.1 Exon + Oxygen-evolving enhancer protein; Photosystem II oxygen-evolving enhancer protein

37037_28 G A 4 9,101,643 Spo12068.1 ~423 bp up – Receptor-like protein kinase

41288_57 A C 6 13,952,350 Spo08623.1 Intron – Rubisco methyltransferase family protein

42302_61 G C 6 27,292,261 Spo16801.1 ~52 kb down + Nijmegen breakage syndrome 1

28330_57 A G 3 40,573,808 Spo11338.1 ~6 kb down – BnaC07g26200D protein

39773_89 A G 5 42,984,604 Spo22580.1 Exon – C2H2 zinc finger protein

39858_80 T A 5 44,598,648 Spo26678.1 ~23 kb up + Xyloglucan xylosyltransferase

34672_102 C T 4 46,706,902 Spo00605.1 Intron – Uroporphyrinogen-III C-methyltransferase

30538_30 C T 3 83,500,450 Spo08712.1 ~63 kb down + AT5g16110/T21H19_30

25958_90 G C 3 101,055,049 Spo11151.1 Exon + UDP-glycosyltransferase

32020_29 A G 4 107,271,059 Spo15437.1 Exon + Nuclear pore complex protein Nup188b

32388_65 G A 4 114,173,692 Spo03506.1 Exon – Hexokinase

† The part of the gene or the physical proximity of the gene in at which the candidate SNP was detected.

‡ CCmax, maximum canopy cover; chr, chromosome; CVolmax, maximum canopy volume; DASbolt, days after sowing until early bolting; DASCC, days after sowing until maximum canopy cover; DASCVol, days after 
sowing until maximum canopy volume; DASExG, days after sowing until maximum excess greenness index; DASPol, days after sowing until pollination; DASkf, days after sowing until kernel filling; ExGmax, maximum 
excess greenness index.

Table 8. Continued.
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such as growth rate, soil nutrient use efficiency, disease 
and pest resistance, and abiotic stress tolerance.
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