2017 APS Annual Meeting AUGUST 5-9 • SAN ANTONIO, TEXAS

602-P: Genome-wide characterization of alternative splicing patterns in sugarcane modulated during infection with smut pathogen, *Sporisorium scitamineum*

In eukaryotes, alternative splicing (AS) is a key posttranscriptional process that promotes transcriptome and proteome diversity during growth, development, and response to stress. Genome-wide studies of AS in sugarcane (*Saccharum* spp.) are lacking, mainly due to absence of a sequenced reference genome and its complex ploidy. Here, we analyzed sugarcane isoform-level transcriptome and AS landscapes, modulated during infection with smut fungus (*Sporisorium scitamineum*), using a combination of *Sorghum bicolor* reference-based and Trinity *de novo* mapping tools. Approximately 15,514 and 14,934 transcripts were detected (≥2 FPKM) at 5 and 200 days after infection (DAI), respectively. Approximately 5000 (14%) of the genes were found to be alternatively spliced. Among them, ~415 (8%), ~235 (5%), ~435 (9%), and ~215 (4%) were intron retention, exon skipping, alternate acceptor and alternate donor type of splicing events, respectively. Differential splicing analysis of healthy and smut-infected sugarcane revealed ~14 and ~506 AS events modulated at 5 and 200 DAI, respectively. Gene-ontology and enrichment analysis revealed overrepresented functional categories such as cell-wall modification, defense signaling and oxidative stress among the differentially spliced genes. Together, our study provided new insights and bioinformatics tools to understand sugarcane AS landscapes altered during biotic stress.

Presenting Author

Renesh Bedre Texas A&M AgriLife Research & Extension Center

Authors

Renesh Bedre Texas A&M AgriLife Research & Extension Center

Sonia Irigoyen Texas A&M AgriLife Research and Extension Center, Texas A&M University System

Find Similar

View Related Events

Day: Monday, August 7, 2017

Patricia Schaker University of São Paulo

Claudia Monteiro-Vitorello University of Sao Paulo

Kranthi Kiran Mandadi Texas A&M AgriLife Research