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1  | INTRODUC TION

Spinach anthracnose (Colletotrichum dematium) is an economically 
important disease widespread across spinach (Spinacia oleracea)‐
growing regions of the USA and around the world (Correll, Black, 
Koike, Brandenberger, & Dalnello, 1994). Several anthracnose‐
causing Colletotrichum species have demonstrated considerable 

versatility in plant host preference and virulence in different envi‐
ronments. For example, the anthracnose pathogen species C. fruti-
cola and C. siamense can both infect white jute, a fibre crop in China 
(Niu, Gao, Chen, & Qi, 2016; Sharma, Kumar, Weir, Hyde, & Shenoy, 
2013). C. brevisporum, C. gloeosporiodes and C. truncatum cause pep‐
per anthracnose disease in India and China (Liu, Tang, et al., 2016a). 
Colletotrichum siamense has been found on partridge tea, citrus and 
mango in China, India, South Africa and Brazil (Cheng et al., 2013; 
Liu et al., 2017; Liu, Chen, Liu, & Hou, 2018). Similarly, C. dematium 
has been isolated from a range of crops including common knot‐
grass in China, cowpea in South Africa, tomato fruits and mulberry 
in Argentina, the ornamental plant German Statice in Bulgaria, and 
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Abstract
Anthracnose (Colletotrichum dematium) is an important disease in spinach (Spinacia 
oleracea). Sources of resistance must be identified, and molecular tools must be de‐
veloped to expedite cultivar development. In this study, a diverse collection of 276 
spinach accessions was scored for anthracnose disease severity. We then evaluated 
marker identification approaches by testing how well haplotype‐based trait model‐
ling compares to single markers in identifying strong association signals. Alleles in 
linkage disequilibrium were tagged in haplotype blocks, and anthracnose‐associated 
molecular markers were identified using single‐SNP (sSNP), pairwise haplotype (htP) 
and multi‐marker haplotype (htM) SNP tagging approaches. We identified 49 sig‐
nificantly associated markers distributed on several spinach chromosomes using all 
methods. The sSNP approach identified 13 markers, while htP identified 24 (~63% 
more) and htM 34 (~162% more). Of these markers, four were uniquely identified by 
the sSNP approach, nine by htP and nineteen by htM. The results indicate that resist‐
ance to anthracnose is polygenic and that haplotype‐based analysis may have more 
power than sSNP. Using a combination of these methods can improve the identifica‐
tion of molecular markers for spinach breeding.
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spinach in Australia and the USA (Correll et al., 1994; Smith & Aveling, 
1997; Yoshida & Shirata, 1999; Dal Bello, 2000; Washington et al., 
2006; Bobev, Jelev, Zveibil, Maymon, & Freeman, 2009; Liu, Jin, et 
al., 2016b). These studies illustrate that different species and strains 
of Colletotrichum may thrive in the same environment on the same 
host plant, on different host plant species, or in the case of C. dema-
tium, on different host plants in a wide range of environments. No 
resistance sources have been characterized until now; therefore, 
sources of genetic resistance need to be identified and molecular 
tools need to be developed to expedite cultivar development.

Spinach is a diploid with 2n = 2X = 12 chromosome configuration 
(Ellis & Janick, 1960) and possesses a medium size genome (989 Mb; 
Arumuganathan & Earle, 1991), and can serve as a model to other 
Amaranthaceae species. Enhanced genomic mapping can be used 
to unlock our understanding of pathogenicity and host resistance 
for anthracnose and many other non‐characterized diseases in spin‐
ach. However, limited genomic‐disease trait characterization studies 
have been reported in spinach in the past. Pioneer genetic mapping 
techniques did not target spinach diseases but were important pre‐
cursors for the current improved genomic capabilities for spinach. 
For instance, an earlier QTL mapping used 101 AFLP (amplified frag‐
ment length polymorphism) and nine microsatellite markers for sex 
linkage/QTL mapping (Khattak, Torp, & Andersen, 2006), SLAF (spe‐
cific‐locus amplified fragment‐seq). This study preceded the use of 
single nucleotide polymorphic (SNP) variants for mapping genomic 
features associated with spinach diseases such as Stemphylium leaf 
spot (Shi, Mou, Correll, Koike, et al., 2016a) and verticillium wilt (Shi, 
Mou, Correll, Motes, et al., 2016b), albeit to a limited extent. Several 
of these SNP‐based genomic mapping efforts have concentrated on 
single‐marker regressions to identify association signals for quanti‐
tative trait locus (QTL).

Spinach is dioecious, with separate male and female plants, al‐
though monoecious plants can occasionally be found that contain 
both male and female flowers (Morelock & Correll, 2008). As the 
female and male parents used in spinach crosses are normally family 
pools of genetic material, obtaining a highly homozygous parent or 
inbred lines for linkage QTL studies is difficult. In this regard, associ‐
ation studies offer a good alternative since no biparental populations 
need to be developed.

There has been significant progress towards the sequencing of 
the first chromosome‐anchored draft genome for spinach, and re‐
lated genomic features have been organized into databases (Xu et 
al., 2017; Yang, Tan, & Zhu, 2016). Thus, as in many relatively well‐
studied crops, molecular procedures previously unavailable for sci‐
entists can now be fully integrated into spinach genomic studies. 
One such implementation is the use of physical map distance‐based 
linkage disequilibrium (LD) and haplotype blocking to dissect the ar‐
chitecture of important traits. SNP tagging to haplotype regions of 
the genome can be extremely useful for testing associations with 
qualitative and quantitative traits. For example, haplotype tagging 
has shown superior power compared to single SNPs in QTL detec‐
tion and mapping accuracy in multiple species (Calus et al., 2009). 
However, variable results have been reported from haplotypes 

versus single SNPs. Earlier simulation studies produced conflicting 
results, with some reporting that single‐marker regression and iden‐
tity by descent (IBD) showed greater power than haplotype‐based 
mapping (Long & Langley, 1999) and others reporting no difference 
between single‐marker and haplotype LD mapping (Zhao, Fernando, 
& Dekkers, 2007).

Although single‐SNP‐based regressions have been used success‐
fully to identify markers associated with important traits in spinach, 
whether or not haplotyping can offer an added advantage over sin‐
gle‐marker regression in association studies has not been explored. 
Several studies using empirical data have shown advantages of using 
haplotypes in LD mapping. For example, most haplotypes fall into 
a few classes with little evidence of recombination and thus can 
dramatically reduce the number of tests and hence the type I error 
rate (Zhao, Aranzana, et al., 2007). A number of studies have ratio‐
nalized grouping SNPs into haplotype blocks because of the ability 
to improve power, robustness and accuracy of association mapping 
in humans (Gabriel et al., 2002), animals (pigs and cattle) (Karimi, 
Sargolzaei, JaB, & Schenkel, 2018; Meuwissen, Odegard, Andersen‐
Ranberg, & Grindflek, 2014) and plants (barley) (Lorenz, Hamblin, 
& Jannink, 2010). Using haplotypes may also capture more LD be‐
tween haplotypes and causal variants (Braz et al., 2019; Wu et al., 
2014); provide more power than single SNPs when an allelic series 
exists at a locus (Morris Rw, 2002); potentially capture epistatic in‐
teractions between variants within a haplotyped locus (Clark, 2004; 
Hamon et al., 2006); and even allow informed testing between two 
alleles showing IBD and clades of haplotype alleles by capturing in‐
formation from evolutionary history (Calus et al., 2009; Zhao, 2003).

Since every association mapping population has a unique pop‐
ulation history (both recent and ancient) that shapes its patterns of 
genetic variation, it is necessary to determine case by case which 
mapping method works best for each crop. Here, we have attempted 
to expand molecular breeding efforts in spinach by exploring how 
well haplotype‐based SNP–trait modelling compares to single‐SNP 
marker in identifying polymorphic signals associated with C. dema-
tium disease resistance. To our knowledge, no previous study has 
explored the utility of haplotypes in genetic studies in spinach.

2  | MATERIAL S AND METHODS

2.1 | Plant materials

Plant material was previously described by Shi, Mou, Correll, Koike, et 
al. (2016a); Shi et al. (2017); Awika et al. (2019). Briefly, the 276 spin‐
ach (Spinacia oleracea L.) accessions used consisted of a diverse panel 
originating from 33 countries that is part of a diversity collection 
maintained and provided by the USDA‐National Plant Germplasm 
System (NPGS) at Ames, Iowa, USA. A detailed description of each 
accession can be found at https://npgsweb.arsgrin.gov/gringlobal/
view2.aspx?dv=web_site_taxon_accessionlist&params=:taxonomyi
d=35256;:siteid=16. For the purpose of this study, we grouped the 
accessions into seven continental subregions based on countries of 
origin as follows: Region 1 (39 accessions from Afghanistan, Egypt, 

https://npgsweb.arsgrin.gov/gringlobal/view2.aspx?dv=web_site_taxon_accessionlist&params=:taxonomyid=35256;:siteid=16
https://npgsweb.arsgrin.gov/gringlobal/view2.aspx?dv=web_site_taxon_accessionlist&params=:taxonomyid=35256;:siteid=16
https://npgsweb.arsgrin.gov/gringlobal/view2.aspx?dv=web_site_taxon_accessionlist&params=:taxonomyid=35256;:siteid=16
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Iran, Iraq and Syria); Region 2 (13 accessions from India, Nepal and 
Pakistan); Region 3 (58 accessions from the USA); Region 4 (1 acces‐
sion from Ethiopia); Region 5 (29 accessions from Belgium, Denmark, 
France, Hungary, Italy, the Netherlands, Spain, Sweden and the 
United Kingdom); Region 6 (30 accessions from China, Japan, Korea, 
Mongolia, Taiwan and Thailand); and Region 7 (106 accessions 
from Georgia, Greece, Macedonia, Montenegro, Russia, Serbia and 
Turkey).

2.2 | Field design and growth environment

The 276 spinach accessions were grown at the Texas A&M AgriLife 
Research and Extension Center located in Uvalde, Texas, at 
29°12′56″ latitude and 99°45°21″ longitude. Accessions were rand‐
omized in the field intercalating rows of the susceptible control cul‐
tivar 'Viroflay'. Each plot consisted of a single row of 30 plants at a 
distance of 4 cm between plants and 50 cm between plots. Seeds 
were sown manually, and plots were fertilized with a generalized N‐
P2O5‐K2O rate of 135–84–90 kg/ha. The spinach field was irrigated 
using an overhead irrigation system as needed.

2.3 | Inoculum preparation, inoculation and 
phenotyping

Plants were inoculated with a single spore isolate of C. dematium ob‐
tained from spinach plants in a commercial field near Uvalde, Texas, 
and maintained on potato dextrose agar media (Difco Laboratories 
Inc). To prepare inoculum, oat (Great Value Old Fashioned Oats, 
Walmart) was placed in 0.02‐µm vented mycology mushroom spawn 
bags (53.34 cm × 20.96 cm × 12.07 cm, MycoSupply Inc) and auto‐
claved twice, 24 hr apart, at 121°C for 45 min and cooled to room 
temperature. After autoclaving, 200  ml of sterile water per kg of 
sterile oats was added to each inoculum bag. Each bag was then in‐
oculated with approximately twelve 5 × 5 mm pieces of 10‐day‐old 
C. dematium colonies grown on potato dextrose agar (PDA) media. 
The inoculum bags were incubated at room temperature and shaken 
well, breaking up any clumps every day to distribute fungal growth 
evenly. The readiness of inoculum was determined when an even 
growth throughout the oats could be seen (~10 days).

At 21  days after spinach seedling emergence, each plant in a 
plot was inoculated uniformly with C. dematium by evenly sprinkling 
a level cup scoop of ~ 90 g oat inoculum and using gloved fingers 
on the seedling canopy. Prior to inoculation, an amount sufficient 
to inoculate all plots was bulked in a clean new five‐gallon bucket 
and uniformly mixed, being careful to break up any clumps to ensure 
even size inoculum for dispersal. Field inoculation was done in the 
morning, while the morning dew was still present to enhance the ini‐
tial inoculum–plant surface contact. Moisture was supplemented by 
light sprinkle irrigation every day (afternoon) for five days to ensure 
favourable conditions for disease development.

Anthracnose symptoms were evaluated using a disease severity 
rating (DSR) based on the proportion of surface area of fully formed 
leaves covered by anthracnose lesions per plant. The plants were 

examined perpendicular from top and at three angles from the sides. 
The surface area covered was averaged per plant and then totalled 
as a per cent on a plot basis. The per‐plot percentages were then 
converted to nominal scores of 1 to 10, where a score of 1 denotes 
0 to 10% infection, 2 denotes 11 to 20% infection, and so on up to a 
score of 10 denoting 91 to 100% infection. Genotypes were evalu‐
ated twice, at 14 days after inoculation (DAI) and at 28 DAI. A mean 
of the two measurements was reported for each plot.

2.4 | Genotyping by sequencing and SNP calling

Genotyping and SNP calling were performed as described by Awika 
et al. (2019). Briefly, the 276 spinach accessions were genotyped by 
sequencing using ddRADseq methodology (Peterson, Weber, Kay, 
Fisher, & Hoekstra, 2012). Illumina short‐read sequencing (HiSeq 
2500) and demultiplexing using individual indexes were performed 
by the Texas A&M AgriLife Genomics and Bioinformatics services. 
Filtered and adapter‐trimmed sequence reads containing >5% un‐
called bases and with average quality score ≤ 20 were discarded using 
a pipeline developed in‐house using Python programming (https​://
github.com/renes​hbedr​e/RseqFilt) (Bedre et al., 2015). High‐qual‐
ity cleaned sequence data were aligned to the draft spinach ref‐
erence genome (v1) (Xu et al., 2017) using the bowtie2 alignment 
tool (Langmead & Salzberg, 2012). Sequences from the 276 spinach 
accessions were then run on Stacks (v1.48) (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013; Rochette & Catchen, 2017) using 
pstacks, cstacks, sstacks and rxstacks modules to identify and fil‐
ter the genotypes (Catchen et al., 2013). The Ada cluster from the 
TAMU High Performance Research Computing Center (http://hprc.
tamu.edu/) was used to perform bioinformatics analysis. The SNP 
pipeline‐end cleanup criteria also included removal of SNPs not an‐
choring to the six published draft chromosome sequences (Xu et al., 
2017). A minimum minor allele frequency (MAF) of > 0.05 was used. 
The 6,167 resulting biallelic SNPs in VCF v4.2 (Danecek et al., 2011) 
were used for downstream analyses. SNP by spinach accession data 
can be downloaded from the Table S1 reported in Awika et al., 2019.

2.5 | Linkage disequilibrium (LD) and LD blocks

We used pairwise comparison of each marker pair by computing 
the squared correlation coefficient (r2) of their allele population 
frequencies. As evidence of no historical recombination, the Hardy–
Weinberg (HW) equilibrium cut‐off p‐value for each marker pair was 
set at .001, which is the probability that their frequency deviation 
from HW equilibrium could be explained by chance (Barrett, Fry, 
Maller, & Daly, 2005; De Bakker et al., 2005). Genotypes (individual 
or singletons in our case) not meeting a minimum 75% threshold of 
non‐missing genotypes for each test marker were excluded. The 
minimum MAF was set at 0.001. To reduce duplicity of marker posi‐
tions, where two or more markers in an input file had the same chro‐
mosomal position, the marker with the least‐complete genotype was 
highlighted in the markers panel and ignored by default. Pairwise 
comparison between any two markers was ignored at >500 kb apart. 

https://github.com/reneshbedre/RseqFilt
https://github.com/reneshbedre/RseqFilt
http://hprc.tamu.edu/
http://hprc.tamu.edu/
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The genotype set consisted of 276 singletons (treated as independ‐
ent families) and zero trios. LD was declared when the r2 between 
two alleles was at least 0.2. LD values were plotted and overlaid 
with other analysis tracks of genomic metadata in Haploview v4.2 
(Barrett et al., 2005).

We adopted Haploview's internally developed “Solid Spine of 
LD” (Barrett et al., 2005) to search for a “spine” of strong LD run‐
ning from one marker to another along the legs of the triangle in 
the LD chart. This meant that the first and last markers in a block 
were in strong LD with all intermediate markers, but that the in‐
termediate markers may not necessarily be in LD with each other. 
Haplotypes for selected blocks were estimated using the accelerated 

expectation‐maximum (EM) algorithm (Excoffier, 1995) similar to the 
partition/ligation method described by Qin, Niu, and Liu (2002). 
This creates highly accurate population frequency estimates of the 
phased haplotypes based on the maximum likelihood as determined 
from the unphased input.

2.6 | Tagging haplotypes

All 6,167 SNP markers from the single‐marker SNPs were available 
for tag selection in haplotype blocks. To tag markers in haplotype 
blocks, two tagging strategies were implemented: pairwise marker 
(pairwise mode), to develop marker‐pair‐based haplotype tag SNPs 
(htP), or multiple marker (aggressive mode), to develop multi‐marker‐
based haplotype tag SNPs (htM). Both the pairwise and aggressive 
methods are well described by De Bakker et al. (2005). Briefly, in 
both pairwise and multiple‐marker strategies, a minimal set of mark‐
ers were selected such that all alleles to be captured were corre‐
lated with a marker in that set at an r2 greater than our user‐defined 
0.8 threshold. Where two or more SNPs had identical positions, the 
less‐completely genotyped duplicate was automatically deselected. 
To avoid overfitting and unbounded haplotype tests in the down‐
stream association phase, only those multiallelic combinations in 
which the alleles were themselves in strong LD as measured by a 
pairwise LOD score set at 3.0 were recorded, assigned genotypes 
and used as pairwise haplotype tags (htP). The multi‐marker hap‐
lotype tagging (htM) strategy went two steps further by first using 
multi‐marker tests constructed from the set of markers chosen as 
pairwise tags to try to capture SNPs that could not be captured in 
the pairwise step. It then replaced certain tags with multi‐marker 
tests to map new multi‐marker tags.

Parameters for marker checks were HW p‐value cut‐off .001, 
minimum genotype for each allele at 75% and minimum MAF of 
0.001. In picking tags to declare a haplotype, possible SNP–SNP in‐
teractions that may occur within a gene or gene cluster were also 
recognized (Su et al., 2013). Since there is little evidence to suggest 
that epistasis occurs frequently between randomly chosen SNPs 
hundreds of kilobases apart (Lorenz et al., 2010), the maximum dis‐
tance within which to declare a haplotype was set at 200 kb. A mini‐
mum distance between picked tags within a haplotype block was set 
at 60 bp to ensure only informative SNPs were included and to avoid 
overfitting the allele test models (Lorenz et al., 2010). All haplotype 
alleles within a block were displayed using AGCT notation, and only 
the polymorphic variants tagged within a block were applied in as‐
sociation tests.

2.7 | Population structure

The allelic ancestry‐based admixture model (Alexander, Novembre, 
& Lange, 2009; Falush, Stephens, & Pritchard, 2007) was applied to 
account for population stratification bias for all the strategies (a total 
of 6,167 single markers, sSNP; 4,231 pairwise marker haplotype 
tags, htP; and 3,848 multi‐marker haplotype tags, htM). Identity‐
by‐state (IBS) similarity was also called, which assumed that two 

F I G U R E  1   Anthracnose disease symptoms are distributed 
across all index values on evaluated spinach accessions. Rating 
scale of symptomatic leaf tissue was as follows: 1 = 1%–10%; 
2 = 11%–20%; 3 = 21%–30%; 4 = 31%–40%; 5 = 41%–50%; 
6 = 51%–60%; 7 = 61%–70%; 8 = 71%–80%; 9 = 81%–90%; 
10 = 91=100%. Accessions with disease index of 1–2 were 
considered as resistant; those with disease index of 3–10 were 
considered as susceptible

TA B L E  1   Summary data for the three tag–trait association tests

  sSNP htP htM

Number of singletons 276 274 276

Number of tagged alleles 6,167 861 2057

Number of blocks – 532 971

Average number of alleles 
tagged per block

– 1.62 2.12

Total SNPs for GWA (al‐
leles captured by tests)

6,167 4,231 3,848

Fraction of alleles captured 
by tests

1 1 0.91

Mean maximum r2 for tests – 0.80 0.99

Trait h2 0.82 0.96 0.99

Power of Ha hypothesis 
test

0.81 0.84 0.87

Number of significant 
markers

19 26 35

Number of filtered signifi‐
cant markersa

13 24 34

aAfter co‐anchored markers were removed. 
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random alleles drawn from the same locus are the same. The dis‐
tance of an individual from itself was set to 0. The admixture model 
was computed using STRUCTURE (v2.3.4) (Pritchard, Stephens, & 
Donnelly, 2000). STRUCTURE was run with 10,000 burn‐in periods 
and 16 replications on all SNPs in the three strategies (sSNP, htP and 
htM). The optimal (ΔK) and K population structure (Q) of each strat‐
egy were estimated using the Evanno method (Evanno, Regnaut, & 
Goudet, 2005). Briefly, to identify the most likely value of K, the rate 
of change in likelihoods between successive values of K was exam‐
ined. To do this, the proportion of each subpopulation assigned to 
each cluster was first determined, and the run with the highest log 
likelihood among the runs for the best K value was identified. The 
optimal ΔK was used in determining the subgroup membership of 

each accession by 10,000 iterations for each K from 2 to 7 (7 being 
the number of arbitrary regions into which the countries of origin 
were grouped for the purpose of this study). The graphics were visu‐
alized in STRUCTURE HARVESTER (Earl & Vonholdt, 2012), which 
also applies the CLUMPP algorithm (Jakobsson & Rosenberg, 2007).

To account for possible hidden allele sharing (Blouin, 2003) that 
may bias association among the study population clusters, a kinship 
matrix (K) was implemented under the non‐shrunk (Bradbury et al., 
2007) context of realized relational matrix (Endelman & Jannink, 
2012), because the number of markers was greater than the number 
of individuals genotyped. Monomorphic sites were removed before 
calculating kinship using the numerical genotype method (Endelman 
& Jannink, 2012).

F I G U R E  2   Graphical representation 
of the relationship between linkage 
disequilibrium (LD) blocks, the two 
haplotype tagging approaches, and SNP 
markers used for association studies. LD 
blocks are shown in solid spines of LD. (a) 
LD scheme generated by the multi‐marker 
method spanning a ~ 460 kb section 
on chromosome 5; declared blocks are 
highlighted with a thick, black outline. 
(b) Enlargement of two htM blocks 
(block number and block size are shown; 
0 kb means < 1 kb) harbouring alleles 
associated with a tagged marker. LD is 
represented by small squares with values 
ranging from 0 to 1 (decimals points are 
omitted to avoid clutter, e.g.: if 1 is shown 
in a square, it should be read as r2 = .01, 8 
is r2 = .08, 25 is r2 = .25, and so on); r2 = 0 
shown in white and complete LD, r2 = 1 
in black. (c) Display of 23 haplotypes in 
six blocks from the htM method, and (d) 
seven haplotypes in three blocks from the 
htP approach. Each haplotype in a block is 
shown with its population frequency and 
connections from one block to the next 
haplotype. Haplotypes within a block are 
read as rows, while alleles of a marker are 
read as columns. Black arrows connect a 
marker with its haplotype and block
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2.8 | Genome‐wide association (GWA) tests

Single‐locus, pairwise marker haplotype and multi‐marker haplo‐
type association tests were computed. The haplotype association 
tests were performed on the set of tagged SNPs in the haplotype 
blocks. Each model incorporated kinship into the Anthracnose re-
sistance = Population structure + Marker effect +  Individuals +Residual 
model. TASSEL 5.2.5 (Bradbury et al., 2007) (version released July 1, 
2017; accessed October 27, 2018–December 25, 2018) was used to 
implement compressed mixed linear model (cMLM) and its comple‐
mentary approach of “population parameters previously determined 
(P3D)” (Zhang et al., 2010). The cMLM decreases the effective sam‐
ple size of such data sets by clustering individuals into groups, while 
P3D eliminates the need to recompute variance components for each 
marker. The P3D is also expected to reduce the dimensionality of the 
kinship matrix (K) and computational time, and to improve model fit‐
ting (Bradbury et al., 2007). Compression on Q + K models and P3D 
was applied for the sSNP, htP and htM SNPs with Q as the covariate 
and K matrix as the random coefficient. This also enabled estimation of 
genetic and residual variances for each combination at the trait level.

To estimate variance components for each marker, cMLM with‐
out the P3D was also implemented on Q + K for sSNP, htP and htM, 
allowing for each taxon to belong to its own group and to test each 
marker independently. Effects were determined for each marker ir‐
respective of whether P3D was used or not. For each compression 
level, likelihood, genetic variance and error variance were determined, 
and the compression level with the lowest value of −2LnLk for the 
trait–compression combination was used for testing the markers. 

A genome‐wide significance threshold was determined using the 
Bonferroni multiple correction method (Bonferroni, 1935) at 0.01 sig‐
nificance for sSNP, htP and htM. Markers not meeting the cut‐offs 
were considered not significantly associated with anthracnose resis‐
tance in spinach in this study. Manhattan and QQ plots were made 
using the R statistical package, qqman (Turner, 2018). The genotypic 
data for the haplotype tags can be found in Table S2 for htP and Table 
S3 for htM; the genotypic information for the single SNPs (sSNPs) can 
be downloaded from a previous report (Awika et al., 2019).

2.9 | Heritability and variant (SNP) effects

Narrow‐sense heritability (h2) was calculated for each marker using 
the outputs from the compressed MLM without P3D model param‐
eters. Per trait, h2 was obtained from the mean genetic variance and 
the mean residual variance from the compression models with P3D, 
as additive variance (σ2

a), divided by additive plus residual variances 
(σ2

a + σ2
e). For each compression level, likelihood, genetic variance 

and error variance were determined.

2.10 | Genomic context of polymorphic variants

The tagged SNP positions on chromosomes were used to query the 
JBrowse 1.15.3 (Buels et al., 2016; Skinner, Uzilov, Stein, Mungall, 
& Holmes, 2009) plugin in SpinachBase (http://www.spina​chbase.
org), and GO annotations were obtained in GOlr 2 frontend 
(Ashburner et al., 2000; Carbon et al., 2009; The_Gene_Ontology_
Consortium, 2019). In silico genomic addresses of the tagged SNPs 

F I G U R E  3   Total number of significant 
markers identified by the different 
association tagging methods. Manhattan 
plots (left) showing chromosome 
designations on the horizontal axis. 
Significance thresholds calculated using 
the Bonferroni multiple comparison 
method at 0.01 are shown by red 
horizontal lines. Markers above the 
threshold lines are considered significant 
association signals for the purpose of this 
study. QQ plots (right) showing P‐value 
deviation of markers from expected 
values

http://www.spinachbase.org
http://www.spinachbase.org
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were used to locate genomic features anchored in the spinach draft 
reference genome. Only markers showing non‐significant LD decay 
and meeting the significance thresholds in the GWA study were 
used. The gene at the associated polymorphic site itself is reported. 
In cases when no anchor gene was found at the associated site, 
genes within an arbitrary 200 kb upstream or downstream were re‐
ported as the representative gene. Putative functional annotations 
were determined through UniProtKB (The_Uniprot_Consortium, 
2019).

2.11 | Ontology classification and 
pathway enrichment

Genes were classified into biological process (BP) and molecular 
function (MF) using the tool GOSlim terms in QuickGO (Binns et al., 
2009) accessed on February 2, 2019. Pathway enrichment analysis 
for gene products was implemented at a 0.1 significance level on 
a Benjamini–Hochberg (B‐H) (Benjamini & Hochberg, 1995) false 

discovery rate (FDR) correction threshold in SpinachBase. Metabolic 
pathway nodes were predicted and drawn in MetaCyc (Caspi et al., 
2018). MetaCyc was selected because it is curated only with evi‐
dence‐based data.

3  | RESULTS

3.1 | Anthracnose disease index shows a continuous 
distribution of infection severity

We classified the germplasm from the most resistant to the most 
susceptible based on visual disease severity rating (DSR) scheme 
of leaf surface area with anthracnose lesions. The DSR was deter‐
mined on a mean basis of 30 plants in each spinach plot/accession. 
A plot with an average DSR of 1 or 2 was considered highly resist‐
ant (R) and a plot with DSR of 9 or 10, very susceptible (VS). Of the 
276 accessions in this study, only five (2% of total) accessions (NSL 
32629, PI 648954, NSL 28216, NSL 42771 and PI 648946), all origi‐
nally sourced or developed in the USA (Table S1), were classified as 
highly resistant. By contrast, most of the spinach accessions were 
classified as susceptible, of which 168 (61%) among which included 
PI 604783, PI 648939, PI 648953, PI 648959, PI 648960, NSL 6092 
from the USA, and PI 648962, PI 648964, PI 647852 PI 604784 
from Afghanistan, China, Georgia and Mongolia, respectively, were 
VS (DSR = 9 or 10) (Table S1). The rest 103 (37%) accessions showed 
intermediate disease symptoms between the two extremes, R and 
VS (Figure 1 and Table S1). The presence of intermediate levels of 
disease symptoms suggests that the resistance is quantitative.

3.2 | Linkage disequilibrium, haplotypes and 
number of tests

Linkage disequilibrium (LD) indicates how correlated polymor‐
phisms are due to their shared history of mutation and recom‐
bination (Flint‐Garcia, Thornsberry, & Buckler Iv, 2003). Thus, 
positive selection of SNP in LD surrounding the causative locus 
of interest can lead to the maintenance of longer haplotypes at 
high frequencies within the population. The LD between marker 
pairs ranged from r2 = 0 to r2 = 1 (SD = 0.147), and LD block sizes 
ranged from 4 bp to 500 kb (SD = 150,133 bp). We declared 532 
haplotype blocks in pairwise marker tests and 971 haplotype 
blocks for multi‐marker tests (Table 1). To declare these haplo‐
type blocks in the pairwise tests, we used 3,312 SNPs in the same 
number of tests. For example, 3,312 unique SNPs were chosen to 
create 3,312 tests, which could either be one of the sets of 3,312 
SNPs or some combination of those SNPs. We tested 7,545 allele 
pair combinations and captured 4,231 of 4,231 (100%) alleles at 
a tagging r2 threshold ≥ 0.8 (mean r2 =  .993). “Alleles captured” 
simply shows how many of the SNPs in the data set have been 
successfully tagged by the set of chosen tests, and the mean r2 
represents the mean for only those SNPs successfully captured.

For multi‐marker haplotyping, 2,924 SNPs were used in the same 
number of tests, and 3,848 of 4,228 (91%) markers were tagged 

F I G U R E  4   Association tagging methods identified unique 
and overlapped significant markers associated with anthracnose 
resistance. (a) Total number of significant filtered markers by 
haplotype strategy; (b) Venn representation of the intersection 
of the marker signals; c number of specific or shared markers 
identified
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in marker–anthracnose resistance association tests (Table 1). The 
slightly smaller number of tagged markers in multi‐marker tests 
(3,848 compared to 4,231 in pairwise marker tests) is likely due to 
the replacement of some markers chosen in the pairwise tests with 
multi‐marker tests and higher failure rate of those tests to meet the 
set LOD cut‐off. This was so, even though the number of blocks har‐
bouring the tagged SNPs was larger for multi‐marker tests than for 
pairwise marker tests. This observation points to the conclusion that 
multi‐marker‐based haplotypes reduce the number of tests required 
compared to both pairwise marker haplotypes and single‐SNP test‐
ing. Figure 2 shows the relationship between LD blocks, haplotype 
tagging strategies htP and htM, and SNP markers on a ~ 460 kb sec‐
tion of chromosome 5.

3.3 | Population structure identified two 
main clusters

We used the SNP allele distribution to determine the population 
structure of the spinach panel. The admixture model grouped the 
276 accessions into two population clusters (Q), as observed based 
on the highest ΔK (K = 2, Figure S1). The K stands for the number 
of clusters, while each cluster is denoted Q, hence Q1 and Q2 in 
the K = 2 clusters. However, there was a level of genetic admixture 
(Figure S1c) suggesting a level of historical interbreeding or from the 
shared ancestral genetic stock. We used the mixed ancestry method 
to account for this admixed structure.

3.4 | Haplotype SNP tagging approaches increase 
signal robustness

The three methods showed different levels of sensitivity and power 
in identifying significant association signals as reported previ‐
ously (Lorenz et al., 2010) at a Bonferroni correction factor of 0.01 
(Figure 3). After co‐anchored markers were filtered, the htM ap‐
proach identified the largest number of markers (34 markers) with 
strong association, followed by the htP strategy with 24 markers and 
the sSNP strategy with 13 markers (Figure 4a). From the three strat‐
egies, a total of 49 different SNP variants showed strong associa‐
tion with anthracnose resistance. Some of these signals showed up 
exclusively using only one method, while others were identified by 
two or all three methods (Figure 4b‐c). For instance, of the 13 strong 
signals identified in the association study using sSNP mapping, only 
four were unique to sSNP: two were shared with the htP method 
and another two were shared with the htM methods; five markers 
were commonly identified by the two haplotype‐based strategies 
(Figure 4b; Table 2). The haplotype htP versus htM methods shared 
eight strongly associated markers not identified by the sSNP ap‐
proach. However, htM tagged 19 unique associated signals, while 
pairwise tagging (htP) only tagged nine association signals not iden‐
tified by the other methods (Figure 4b). These observations show 
that haplotype block tagging of polymorphic markers improved the 
robustness of marker–phenotype signal detection compared to the 
single‐SNP association study and suggest that even with a reduced Ta
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number of tests, the multi‐marker haplotype method was more ro‐
bust at detecting associations than the pairwise marker method in 
this study. The htP and htM spinach genotypic data per accession are 
shown in Tables S2 and S3.

3.5 | Models differ in minor allele frequency, allelic 
effect on the phenotypic variance explained

The higher‐order allele clustering (htM) tagged the most unique 
minor alleles with effects (19 unique markers) with a 32.48 average 
per allele effect, which was above the mean for all significant minor 
allele effects (38 alleles, average effect 20.79). The average per al‐
lele effect of htM‐tagged alleles was nearly 2.5 times as large as the 
average per allele effect for htP (13 alleles, effect 10.84) and nearly 
eight times that of sSNP (6 alleles, average effect 3.88) (Table 3). 
Even when the effect (223.38, in Table 2) of the minor allele A, 
marker 19962_15, chr 1, located at 40,835,316 (generated by htM), 
was assumed to be an outlier and the value normalized by winsoriza‐
tion (Dixon, 1960; Hastings, Mosteller, Tukey, & Winsor, 1947), the 
average effects of the minor alleles became 27.79 for htM and 17.30 
for the total, which were not substantial drops from the original 
means. This trend was reversed with regard to the MAF, r2 and per 
marker h2. Generally, the sSNP method produced the largest average 
of MAF, minor allele phenotypic variation explained (PVE, r2) and h2, 
followed by the htP method. Both sSNP and htP had above‐aver‐
age MAF, PVE and h2, while htM had below‐average MAF, PVE and 
h2. This lower average MAF, PVE and h2 may have been due to the 
larger variability observed of these association components in the 
haplotype‐based approaches compared to the single‐SNP approach. 
However, this increased variability did not alter the integrity of the 
markers detected by the haplotype approaches (hence the higher 
marker effects). Such variability is associated with rare alleles, and it 
is expected not to lead to false positives (Tabangin, Woo, & Martin, 
2009).

3.6 | Anchored genes show a wide 
range of functions with putative roles in 
anthracnose resistance

The 49 polymorphic variants were anchored in or close to 49 genes 
(35 in genes and 14 within 30 kb of a gene). Of the 49 genes, 45 
(~92%) code for known proteins and four (~8%) code for unknown 
proteins (Table 4). Considering each method (sSNP, htP and htM) 
separately, the markers identified were generally proportionately 
distributed across all six chromosomes (Table 2). Functional anno‐
tation reveals several biological processes and molecular functions 
putatively involved in host resistance such as those involved in plant 
stress responses and metabolic processes (Figure 5).

Each method separately or jointly identified genes implicated in 
plant–pathogen interactions and other important plant metabolic 
functions. For instance, the marker 31716_82 (on chr4) identified by 
htP and htM is a polymorphism of the gene Spo07294, an ADP‐ribo‐
sylation factor‐like protein implicated in effective plant host defences 

and in pathogenic bacteria–plant host interactions (Feng, Liu, Shan, 
& He, 2016). The marker 25201_21 (chr2), identified by sSNP only, is 
in the gene Spo21787 that codes for FAD (flavin adenine dinucleo‐
tide) synthase and is important in plant defence signalling, while the 
marker 43942_57, identified by all the three methods (sSNP, htP and 
htM), is in the putative susceptibility factor gene Spo09720 encoding 
beta‐amylase, an enzyme present in fungi, bacteria and plants that 
may be used by microbes to hydrolyse insoluble starch in plant hosts 
(Rodríguez‐Sanoja, Oviedo, & Sánchez, 2005). These results suggest 
that the use of both single markers and haplotypes may be combined 
to increase the robustness of association studies.

3.7 | The relationship between resistant and 
susceptible accessions tested using the 49 significant 
polymorphic variants

In order to determine the propensity of the identified signals to 
associate with either resistance or susceptibility, we tested ances‐
tral relatedness among 17 accessions consisting of the five most 
resistant (R, DSR 1 or 2) and 12 of the most susceptible (S, DSR 
9 or 10) accessions (Figure 6). We aligned and determined the 
phylogeny of the nucleotide sequences of each of the 17 acces‐
sions at the 49 significant SNP loci using MEGA version X (Kumar, 
Stecher, Li, Knyaz, & Tamura, 2018) based on the neighbour‐join‐
ing method (Saitou & Nei, 1987). Phylogeny was tested using 500 
bootstrap replications (Felsenstein, 1985) for the combined 17 
(R and S) accessions. The substitution model based on maximum 
composite likelihood method (Tamura, Nei, & Kumar, 2004) was 
implemented for the nucleotides at the 49 significant polymor‐
phic sites (see below) in each of the accession. We used the de‐
fault settings of uniform rates and assumed homogenous pattern 
among lineages. Pairwise deletion was selected for sites with gaps 
or missing data. The results show there are two main divergent 
hereditary branches for the markers among the most R and S ac‐
cessions (Figure 6). One branch consisted of six accessions, which 
were all classified as susceptible (S). The second branch showed a 
measure of shared ancestry between the five R and the rest six S 
lines, with all the five R lines (NSL 28216, NSL 32629, NSL 42771, 
PI 648946 and PI 648954). This suggests that some of the marker 
signals were shared between the R and the S accessions, and thus 
that such polymorphism signals may not be important resistance 
factors. However, the R accession nodes were disproportionately 
enriched in the second arm of the significant marker hereditary 
tree (Figure 6), suggesting that some common SNPs shared among 
the R accessions are associated with resistance and may be im‐
portant for marker‐assisted selection. Particularly, two of the R 
accessions (PI 648946 and PI 648954) specifically shared the 
most distant node from the admixed R and S lines, suggesting that 
these spinach accessions may be harbouring SNPs more closely 
associated with resistance compared to the rest of the accessions. 
These two R lines and the six S lines in the all‐susceptible branch 
could be candidate parents in developing biparental populations 
segregating for the anthracnose resistance and for the resistance 
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marker validation. Since none of the five R lines have been pre‐
viously reported as possible resistance sources for anthracnose, 
they may form part of potential new sources for anthracnose‐re‐
sistant breeding in spinach.

4  | DISCUSSION

The availability of genomic resources for spinach has grown appreci‐
atively over the last decade. Here, we leveraged tagging of alleles in 
LD in haplotypes as a method implemented successfully to improve 
detection of marker–trait association signals in other crops and ani‐
mal systems. We also performed single‐marker SNP tests to offer 
a comparison of their sensitivity to that of haplotype‐based mark‐
ers in the same population. Differences in power and sensitivity of 
single SNPs compared to haplotypes and how these are calculated 
have been shown by other studies using simulated and empirical 
data in pigs and cattle, in humans and in barley (Braz et al., 2019; 
Clark, 2004; Gabriel et al., 2002; Hamon et al., 2006; Karimi et al., 
2018; Lorenz et al., 2010; Meuwissen et al., 2014; Morris Rw, 2002; 
Wu et al., 2014). In the present study, we therefore concentrated on 
applying those principles with the aim of exploiting the advantages 
of single‐SNP and haplotype methods to enhance the detection of 
polymorphisms with potential roles in spinach–anthracnose interac‐
tions. Such advantages include a dramatically reduced number of 
tests and hence the type I error rate since most haplotypes fall into a 
few classes with little evidence of recombination (Zhao, Fernando, et 
al., 2007). This also corresponds to improved power and robustness 
to accurately detect true association (Gabriel et al., 2002; Morris Rw, 
2002). However, they were also cognizant of the hypothetical prob‐
lems associated with pooling across those heterogeneous samples 
and hence some phasing ambiguity (Andrés et al., 2007). However, 
the robust application of IBD algorithms should have reduced this 
ambiguity to a bare minimum (Browning & Browning, 2011). We also 
highlighted where empirical differences between results from the 
three approaches were apparent.

4.1 | Blocking‐and‐tagging results in enhanced 
detection of true associations

We used the conservative Bonferroni correction (BC) at 0.01 sig‐
nificance level to adjust p‐value for the number of tests conducted. 
BC helps to reveal the strength of the test for method comparison 
by reducing the family‐wise error rate or the number of false posi‐
tives, although we acknowledge this approach may have resulted in 

an increased number of false‐negative markers. In order to estimate 
the power of the additive effect model to detect true associations 
in each approach, we considered the number of tagged markers in 
each approach as a “sample size”, with a mean and a variance of the 
marker effects, and a BC threshold. Because of the reduced testing 
burden (in numbers) (Zhao, Fernando, et al., 2007), the BC‐associ‐
ated threshold P‐value was slightly larger (2.60E‐06) in htM than in 
htP (2.36E‐06) and sSNP (1.62E‐06) (Figure 2). The haplotype ap‐
proaches therefore had slightly greater but not significantly differ‐
ent power from that of the sSNP approach. The values were 0.81, 
0.84 and 0.87 from sSNP, htP and htM, respectively (Table 1). As 
expected, the two main determinants of power (population size 
and alpha) (Lorenz et al., 2010) appeared to compensate for power 
such that the larger population (test SNPs) in sSNP compared to htP 
and htM compensated for the smaller alpha (BC threshold) in sSNP 
compared to the larger alpha in htP and htM (Figure 4; Tables 1 and 
2). In a simulation of QTL effect by combining SNPs, a previous re‐
port found that blocking methods that combined a SNP pair had the 
greatest power to detect significant markers in most cases (Schaid, 
2004). In our case, the differences in power were very slight but 
might explain the ~ 63% and ~ 162% more marker‐anchoring genes 
identified by the haplotype tagged SNPs (htP and htM, respectively), 
than by sSNP. This does not preclude the fact that the single‐marker 
procedure could still uniquely identify four marker‐anchoring genes, 
even though this number was lower than the number of unique 
marker‐anchoring genes in the pairwise and multi‐marker haplotype 
procedures. Therefore, the use of haplotype tags may be appropri‐
ate for detecting additional true association signals missed by the 
single‐SNP tagging alone.

4.2 | Haplotype SNP tagging results on higher 
allelic effects

The allelic effects were generally higher for the same marker when 
tagged in a haplotype block than as a single marker (Table 2). On av‐
erage, there was a significantly larger effect (Student's t‐test, p ≤ .05) 
with increase in marker clustering (htM > htP>sSNP). For example, 
for the first five markers identified by all three strategies, the al‐
leles of sSNP had an average effect (absolute) of 3.73 (R2 = 18.8), 
while those of htP and htM had average effects of 5.29 (R2 = 28.8) 
and 12.6 (R2 = 10.836), respectively. A similar trend was shown for 
the eight markers common between htP and htM, with alleles of htP 
having an average effect of 13.6 (R2 = 13.5) and those of htM having 
an average effect of 17.0 (R2 = 11.5). However, on average, the minor 
alleles in sSNP explained the least variance (3.88%), followed by the 

Method
Number of 
minor alleles Mean effects Mean MAF Mean PVE Mean h2

sSNP 6 3.88 (2.28) 0.46 (0.02) 0.19 (0.05) 0.89 (0.07)

htP 13 10.84 (4.38) 0.25 (0.15) 0.18 (0.17) 0.72 (0.41)

htM 19 32.48 (51.04) 0.25 (0.13) 0.14 (0.08) 0.64 (0.40)

All 38 20.79 (37.70) 0.28 (0.13) 0.16 (0.11) 0.71 (0.38)

TA B L E  3   Mean minor allele statistics 
of significant markers by tagging method. 
Standard deviations are shown in 
parentheses
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TA B L E  4   Functional annotation of sample markers with significant association signals

Method Marker Chr Position Gene version Functional annotation

sSNP 32006_119 4 1.07E + 08 Spo15466.1 BHLH transcription factor, Basic helix–loop–
helix‐like protein

41566_67 6 18,775,069 Spo06040.1 TransSNP, htMembrane nine 1

44220_132 6 44,775,432 Spo23358.1 Carotenoid cleavage dioxygenase 4

44430_95 6 4,847,811 Spo17060.1 Unknown protein

htP 26787_118 3 1,532,247 Spo12930.1 Protein LONGIFOLIA 2 (Protein TON1 
RECRUITING MOTIF 1)

20941_21 1 48,227,888 Spo04891.1 Phosphoinositide phospholipase C (3.1.4.11)

20014_86 1 41,230,635 Spo10761.1 Pectin lyase‐like protein

19722_61 1 39,055,145 Spo25784.1 5'‐AMP‐activated protein kinase‐related

21915_12 2 16,845,611 Spo02089.1 Potassium channel

28140_95 3 37,770,803 Spo08254.1 Zinc finger A20 and AN1 domain‐containing 
stress‐associated protein 8

34572_112 4 43,343,096 Spo16791.1 BZIP transcription factor family protein 3

37730_147 5 12,033,640 Spo05241.1 Pectin lyase‐like protein

44219_78 6 44,775,486 Spo23358.1 Carotenoid cleavage dioxygenase 4

htM 24234_63 2 50,772,717 Spo01606.1 (Glycosyltransferase family 1 protein) 
(glycosyltransferase)

31597_16 4 1.02E + 08 Spo11081.1 Mov34/MPN/PAD−1 family protein

41286_72 6 13,952,296 Spo08623.1 Rubisco methyltransferase family protein

42874_64 6 33,655,811 Spo12155.1 Nodulin MtN21/EamA‐like transporter family 
protein

19263_44 1 34,763,714 Spo06085.1 Probable magnesium transporter NIPA9

19563_17 1 3,782,036 Spo25392.1 MYB transcription factor

19962_15 1 40,835,316 Spo10734.1 Unknown protein

24516_60 2 52,366,936 Spo23665.1 (DNA‐binding protein) (MYB transcription 
factor)

24705_120 2 54,129,583 Spo23855.1 F‐box family protein

24844_46 2 55,114,067 Spo21552.1 Heat shock 70 kDa protein 4

25384_66 2 58,651,886 Spo01185.1 Zinc finger, C3HC4 type (RING finger) protein

31191_147 3 9,539,285 Spo26660.1 Gamma‐tocopherol methyltransferase

33698_12 4 18,346,130 Spo06452.1 Unknown protein

38278_107 5 17,702,567 Spo19761.1 Nucleolar protein NOP56

39005_53 5 28,531,658 Spo01004.1 GHMP kinase ATP‐binding protein, putative

40099_56 5 50,109,435 Spo16236.1 Plant protein of unknown function (DUF641)

40948_89 5 8,362,430 Spo27269.1 Arginine/serine‐rich coiled coil protein 1

41186_110 6 12,079,239 Spo04996.1 (Oligopeptidase A, putative) (3.4.24.70)

43777_80 6 41,015,140 Spo25995.1 Unknown protein

sSNP, htP 28237_70 3 39,199,668 Spo20779.1 S‐Adenosyl‐L‐methionine‐dependent methyl‐
transferases superfamily protein

30552_38 3 83,995,831 Spo08703.1 Unknown protein

sSNP, htM 18919_39 1 31,435,812 Spo00536.1 TransSNP, htMembrane protein, putative

32755_39 4 1.18E + 08 Spo11036.1 DUF688 family protein

(Continues)
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minor alleles in htP (10.84%) and those in htM (32.48%; Table 3). The 
number of minor alleles as a percentage of the total was larger in 
haplotype tags (52% for htP and 59% for htM) than for sSNP (40%). 
For the anthracnose resistance trait, the estimated effect‐size dis‐
tribution among minor alleles may suggest the existence of increas‐
ingly large numbers of susceptibility SNPs with decreasingly small 
effects.

4.3 | Genes associated with anthracnose 
resistance are ubiquitously dispersed throughout the 
genome, and some participate in many biological 
processes and functions

The number, location and wide functional diversity of genes iden‐
tified suggests that anthracnose in spinach is a multigenic trait 

Method Marker Chr Position Gene version Functional annotation

htP, htM 24806_50 2 54,880,205 Spo17851.1 Single‐stranded DNA‐binding protein WHY1, 
chloroplastic (Protein WHIRLY 1) (ZmWHY1) 
(Precursor)

28190_146 3 38,721,303 Spo21815.1 Proteasome subunit alpha type (3.4.25.1)

31191_149 3 9,539,283 Spo26660.1 Gamma‐tocopherol methyltransferase

31716_82 4 1.03E + 08 Spo07294.1 ADP‐ribosylation factor‐like protein 5

41284_58 6 13,942,768 Spo08608.1 O‐Fucosyltransferase family protein

44036_48 6 43,347,911 Spo23418.1 Peroxidase (1.11.1.7)

22624_143 2 30,891,579 Spo07988.1 Lipid transfer protein

38635_43 5 2,323,118 Spo02299.1 (Cytochrome P450, putative) (1.14.14.1)

sSNP, htP, htM 24623_126 2 53,247,408 Spo23748.1 WD and tetratricopeptide repeat protein, 
putative

25305_48 2 58,152,897 Spo01146.1 Cullin‐like protein 1

35570_138 4 6,527,209 Spo15721.1 Heavy metal ATPase 5

38421_39 5 20,353,750 Spo05063.1 Pentatricopeptide repeat superfamily protein

43942_57 6 42,706,126 Spo09720.1 Beta‐amylase

TA B L E  4   (Continued)

F I G U R E  5   Gene ontogeny classification of genes anchoring polymorphic variants strongly associated with anthracnose resistance ratings 
by (a) biological process and (b) molecular function
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(Figures 3 and 5). In this study, for instance, the gene ontology 
(GO) term (GO:0031625) “ubiquitin protein ligase binding” was par‐
ticularly enriched for the genes Spo21552 (identified by htM only) 
and Spo01146 (identified by sSPN, htP and htM). Ubiquitination is 
widespread in the genome of many organisms and is a well‐known 
protein‐modification system that may be deployed to regulate plant 
defences against pathogens and as essential components of (R)‐
gene‐mediated resistance (Devoto, Muskett, & Shirasu, 2003). Some 
of the genes we identified are known to mediate diverse biological 
processes (Table 4) and may be, intuitively, involved in polygenic re‐
sistance in many pathosystems including C. dematium–S. oleracea.

At the marker resolution and population sizes used, both the 
pairwise (htP) and multiple‐marker (htM) methods enabled the iden‐
tification of additional markers hosted by genes associated with bio‐
synthetic processes involving important defence molecules. These 
pathways were not represented by markers in the sSNP strategy. For 
instance, by htP and htM haplotype tagging strategies, we identified 
the pathways PWY‐7436 (tocotrienol) and PWY‐1422 (tocopherol), 
which are vitamin E pathways in which the gene Spo26660 codes for 
the enzyme gamma‐tocopherol methyltransferase, which mediates 
the conversion of gamma‐tocopherol to alpha‐tocopherol in vitamin E 
biosynthesis — vitamin E is an antioxidant suggested to mediate in abi‐
otic and biotic stresses (Abbasi, Hajirezaei, Hofius, Sonnewald, & Voll, 

2007). The Spo26660 gene annexes (186  bp upstream) the marker 
31191_149, which is a C‐A inversion located at 9539283 on chr3.

Additional genes implicated in plant immunity signalling path‐
ways were identified by haplotype tagging. One of these genes, 
Spo04891, was annotated to three related but distinct pathways 
including D‐myo‐inositol (1,4,5)‐trisphosphate biosynthesis, sug‐
gested to be an important precursor in plant signalling for en‐
ergy homeostasis and a signalling molecule in immune responses 
(Sengupta, Mukherjee, Basak, & Majumder, 2015). Others in‐
cluded Spo21787, coding for a central precursor molecule of FAD 
synthase, which has antioxidant activity (Sandoval, Zhang, & Roje, 
2008). FAD synthase 2 is a chloroplastic protein known for its cru‐
cial role in defence signalling against oxidative stress (Sandoval et 
al., 2008). Similarly, antioxidant vitamin tocopherols, including α‐
tocopherol, β‐tocopherol, γ‐tocopherol and δ‐tocopherol (Cheng 
et al., 2003; Porfirova, Bergmuller, Tropf, Lemke, & Dormann, 
2002), have been ubiquitously identified in co‐expression analy‐
sis during fungal and plant–host interactions (Samsatly, Copley, & 
Jabaji, 2018). The strong signal associated with these antioxidant 
genes may suggest similar defence signalling in C. dematium and 
S.  oleracea L. interactions. Functional analyses of the identified 
candidate genes can be performed in future work to explore their 
involvement in resistance mechanisms.

F I G U R E  6   Ancestry relationships of spinach accessions with respect to 49 significant polymorphic sites (see in GWAS results). The 
ancestry history was inferred using the neighbour‐joining method. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (500 replicates) is shown next to the branches. The evolutionary distances were computed using the maximum 
composite likelihood method and are in the units of the number of base substitutions per site. Field entries as used with the genotypic data 
are shown in red, followed by the corresponding accession identifier, the name, origin and disease severity rating—DSR. All ambiguous 
positions were removed for each sequence pair (pairwise deletion option). Analyses were conducted in MEGA X (Kumar et al., 2018). 
Analysis involved 17 nucleotide sequences (five resistant lines, in filled circles, tested together with 12 lines classified as susceptible
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5  | CONCLUSIONS

Based on our current data in spinach, haplotype tagging methods 
htP and htM may be more powerful in detecting marker–phenotype 
signals than the sSNP method. However, these methods failed to de‐
tect some signals found only to be significant when using the sSNP 
method. Therefore, the combined use of sSNP, htP and htM strategies 
should be employed to enhance the detection of polymorphisms with 
a potential role in spinach resistance against anthracnose since the 
highest number of detected markers resulted from the combination 
of all three approaches. After detection, these potential markers need 
to be validated in segregating populations to determine their value in 
marker‐assisted selection programmes.

ACKNOWLEDG MENTS

This study was supported in part by funds from the Texas 
A&M AgriLife Research Vegetable Seed Grant FY17 and FY18 
124353‐96181 to C.A.A., V.J. and K.C.

CONFLIC T OF INTERE S TS

The authors declare that they have no competing interest.

AUTHOR CONTRIBUTIONS

H.O.A. performed population and genomic analyses and drafted the 
manuscript; K.C. and V.J. conducted field experiments and anthrac‐
nose resistance phenotyping; R.B. and K.K.M. performed SNP vari‐
ant call analysis; C.A.A. designed and supervised the experiments. 
All the authors contributed to writing and reviewing the manuscript.

ORCID

Carlos A. Avila   https://orcid.org/0000-0002-1969-4706 

R E FE R E N C E S

Abbasi, A.‐R., Hajirezaei, M., Hofius, D., Sonnewald, U., & Voll, L. M. 
(2007). Specific roles of alpha‐ and gamma‐tocopherol in abiotic 
stress responses of transgenic tobacco. Plant Physiology, 143, 1720–
1738. https​://doi.org/10.1104/pp.106.094771

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model‐based 
estimation of ancestry in unrelated individuals. Genome Research, 19, 
1655–1664. https​://doi.org/10.1101/gr.094052.109

Andrés, A., Clark, A., Shimmin, L., Boerwinkle, E., Sing, C., & Hixson, J. 
(2007). Understanding the accuracy of statistical haplotype infer‐
ence with sequence data of known phase. Genetic Epidemiology, 31, 
659–671. https​://doi.org/10.1002/gepi.20185​

Arumuganathan, K., & Earle, E. (1991). Nuclear DNA content of some 
important plant species. Plant Molecular Biology Reporter, 9, 208–218. 
https​://doi.org/10.1007/BF026​72069​

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. 
M., … Sherlock, G. (2000). Gene ontology: Tool for the unification 
of biology. Nature Genetics, 25, 25–29. https​://doi.org/10.1038/ 
75556​

Awika, H. O., Bedre, R., Yeom, J., Marconi, T. G., Enciso, J., Mandadi, 
K., … Avila, C. A. (2019). Developing Growth‐associated molecu‐
lar markers via high‐throughput phenotyping in Spinach. The Plant 
Genome Journal, 12(3), 1–19. https​://doi.org/10.3835/plant​genom​
e2019.03.0027

Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: Analysis 
and visualization of LD and haplotype maps. Bioinformatics, 21, 263–
265. https​://doi.org/10.1093/bioin​forma​tics/bth457

Bedre, R., Rajasekaran, K., Mangu, V., Sanchez Timm, L., Bhatnagar, D., 
& Baisakh, N. (2015) Genome‐wide transcriptome analysis of cot‐
ton (Gossypium hirsutum L.) identifies candidate gene signatures in 
response to aflatoxin producing fungus Aspergillus flavus. PLoS ONE, 
10, e0138025.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: 
A practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society, 1, 289–300.

Binns, D., Dimmer, E., Huntley, R., Barrell, D., O'Donovan, C., & Apweiler, 
R. (2009). QuickGO: A web‐based tool for Gene Ontology searching. 
Bioinformatics, 25, 3045–3046. https​://doi.org/10.1093/bioin​forma​
tics/btp536

Blouin, M. S. (2003). DNA‐based methods for pedigree reconstruction and 
kinship analysis in natural populations. Trends in Ecology & Evolution, 
18, 503–511. https​://doi.org/10.1016/S0169-5347(03)00225-8

Bobev, S. G., Jelev, Z. J., Zveibil, A., Maymon, M., & Freeman, S. (2009). 
First report of anthracnose caused by Colletotrichum dematium 
on Statice (Goniolimon tataricum, Synonym Limonium tataricum) 
in Bulgaria. Plant Disease, 93, 552–552. https​://doi.org/10.1094/
PDIS-93-5-0552C​

Bonferroni, C. (1935) Il calcolo delle assicurazioni su gruppi di teste. Studi in 
onore del professore salvatore ortu carboni:13–60.

Bradbury, P., Zhang, Z., Kroon, D., Casstevens, T., Ramdoss, Y., & Buckler, 
E. (2007). TASSEL: Software for association mapping of complex 
traits in diverse samples. Bioinformatics, 23, 2633–2635. https​://doi.
org/10.1093/bioin​forma​tics/btm308

Braz, C. U., Taylor, J. F., Bresolin, T., Espigolan, R., Feitosa, F. L. B., 
Carvalheiro, R., … de Oliveira, H. N. (2019). Sliding window haplo‐
type approaches overcome single SNP analysis limitations in identi‐
fying genes for meat tenderness in Nelore cattle. BMC Genetics, 20, 
8. https​://doi.org/10.1186/s12863-019-0713-4

Browning, S., & Browning, B. (2011). Haplotype phasing: Existing meth‐
ods and new developments. Nature Reviews Genetics, 12, 703–714. 
https​://doi.org/10.1038/nrg3054

Buels, R., Yao, E., Diesh, C. M., Hayes, R. D., Munoz‐Torres, M., Helt, G., 
… Holmes, I. H. (2016). JBrowse: A dynamic web platform for ge‐
nome visualization and analysis. Genome Biology, 17, 66. https​://doi.
org/10.1186/s13059-016-0924-1

Calus, M. P. L., Meuwissen, T. H. E., Windig, J. J., Knol, E. F., Schrooten, 
C., Vereijken, A. L. J., & Veerkamp, R. F. (2009). Effects of the 
number of markers per haplotype and clustering of haplotypes 
on the accuracy of QTL mapping and prediction of genomic 
breeding values. Genetics Selection Evolution, 41, 11. https​://doi.
org/10.1186/1297-9686-41-11

Carbon, S., Ireland, A., Mungall, C. J., Shu, S. Q., Marshall, B., & Lewis, 
S. (2009). AmiGO: Online access to ontology and annotation data. 
Bioinformatics, 25, 288–289. https​://doi.org/10.1093/bioin​forma​
tics/btn615

Caspi, R., Billington, R., Fulcher, C. A., Keseler, I. M., Kothari, A., 
Krummenacker, M., … Karp, P. D. (2018). The MetaCyc database 
of metabolic pathways and enzymes. Nucleic Acids Research, 46, 
D633–D639. https​://doi.org/10.1093/nar/gkx935

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. 
(2013). Stacks: An analysis tool set for population genomics. Molecular 
Ecology, 22, 3124–3140. https​://doi.org/10.1111/mec.12354​

Cheng, B. P., Huang, Y. H., Song, X. B., Peng, A. T., Ling, J. F., & Chen, 
X. (2013). First Report of Colletotrichum siamense Causing leaf 

https://orcid.org/0000-0002-1969-4706
https://orcid.org/0000-0002-1969-4706
https://doi.org/10.1104/pp.106.094771
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1002/gepi.20185
https://doi.org/10.1007/BF02672069
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.3835/plantgenome2019.03.0027
https://doi.org/10.3835/plantgenome2019.03.0027
https://doi.org/10.1093/bioinformatics/bth457
https://doi.org/10.1093/bioinformatics/btp536
https://doi.org/10.1093/bioinformatics/btp536
https://doi.org/10.1016/S0169-5347(03)00225-8
https://doi.org/10.1094/PDIS-93-5-0552C
https://doi.org/10.1094/PDIS-93-5-0552C
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1186/s12863-019-0713-4
https://doi.org/10.1038/nrg3054
https://doi.org/10.1186/s13059-016-0924-1
https://doi.org/10.1186/s13059-016-0924-1
https://doi.org/10.1186/1297-9686-41-11
https://doi.org/10.1186/1297-9686-41-11
https://doi.org/10.1093/bioinformatics/btn615
https://doi.org/10.1093/bioinformatics/btn615
https://doi.org/10.1093/nar/gkx935
https://doi.org/10.1111/mec.12354


16  |     AWIKA et al.

drop and fruit spot of Citrus reticulata Blanco cv. Shiyue Ju in 
China. Plant Disease, 97, 1508–1508. https​://doi.org/10.1094/
PDIS-04-13-0352-PDN

Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D. A., & Dellapenna, 
D. (2003). Highly divergent methyltransferases catalyze a conserved 
reaction in tocopherol and plastoquinone synthesis in cyanobacteria 
and photosynthetic eukaryotes. The Plant Cell, 15, 2343–2356. https​
://doi.org/10.1105/tpc.013656

Clark, A. G. (2004). The role of haplotypes in candidate gene studies. Genetic 
Epidemiology, 27, 321–333. https​://doi.org/10.1002/gepi.20025​

Correll, J. C. M. E. T., Black, M. C., Koike, S. T., Brandenberger, L. P., & 
Dalnello, F. J. (1994). Economically important diseases of Spinach. 
Plant Disease, 78, 653–660. https​://doi.org/10.1094/PD-78-0653

Dal Bello, G. M. (2000). First Report of Colletotrichum dematium on tomato 
in Argentina. Plant Disease, 84, 198–198. https​://doi.org/10.1094/
PDIS.2000.84.2.198A

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., 
… Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 
27, 2156–2158. https​://doi.org/10.1093/bioin​forma​tics/btr330

De Bakker, P. I., Yelensky, R., Pe'er, I., Gabriel, S. B., Daly, M. J., & Altshuler, 
D. (2005). Efficiency and power in genetic association studies. Nature 
Genetics, 37, 1217–1223. https​://doi.org/10.1038/ng1669

Devoto, A., Muskett, P. R., & Shirasu, K. (2003). Role of ubiquitina‐
tion in the regulation of plant defence against pathogens. Current 
Opinion in Plant Biology, 6, 307–311. https​://doi.org/10.1016/
S1369-5266(03)00060-8

Dixon, W. J. (1960). Simplified estimation from censored normal sam‐
ples. The Annals of Mathematical Statistics, 31, 385–391. https​://doi.
org/10.1214/aoms/11777​05900​

Earl, D. A., & Vonholdt, B. M. (2012). STRUCTURE HARVESTER: A web‐
site and program for visualizing STRUCTURE output and implement‐
ing the Evanno method. Conservation Genetics Resources, 4, 359–361. 
https​://doi.org/10.1007/s12686-011-9548-7

Ellis, J. R., & Janick, J. (1960). The chromosomes of Spinacia ol-
eracea. American Journal of Botany, 47, 210–214. https​://doi.
org/10.1002/j.1537-2197.1960.tb071​15.x

Endelman, J. B., & Jannink, J.‐L. (2012). Shrinkage estimation of the real‐
ized relationship matrix. G3: Genes. Genomes, Genetics, 2, 1405–1413. 
https​://doi.org/10.1534/g3.112.004259

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the num‐
ber of clusters of individuals using the software structure: A 
simulation study. Molecular Ecology, 14, 2611–2620. https​://doi.
org/10.1111/j.1365-294X.2005.02553.x

Excoffier, L. S. M. (1995). Maximum‐likelihood estimation of molecular 
haplotype frequencies in a diploid population. Molecular Biology and 
Evolution, 12, 912–917.

Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of popu‐
lation structure using multilocus genotype data: Dominant markers 
and null alleles. Molecular Ecology Notes, 7, 574–578. https​://doi.
org/10.1111/j.1471-8286.2007.01758.x

Felsenstein, J. (1985). Confidence limits on phylogenies: An ap‐
proach using the bootstrap. Evolution, 39, 783–791. https​://doi.
org/10.1111/j.1558-5646.1985.tb004​20.x

Feng, B., Liu, C., Shan, L., & He, P. (2016). Protein ADP‐Ribosylation 
takes control in plant‐bacterium interactions. PLoS Path, 12, 
e1005941–e1005941. https​://doi.org/10.1371/journ​al.ppat.1005941

Flint‐Garcia, S. A., Thornsberry, J. M., & Buckler Iv, E. S. (2003). Structure 
of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 
357–374. https​://doi.org/10.1146/annur​ev.arpla​nt.54.031902.134907

Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., 
Blumenstiel, B.,…Altshuler, D. (2002). The structure of haplotype 
blocks in the human genome. Science, 296, 2225–2229. https​://doi.
org/10.1126/scien​ce.1069424

Hamon, S. C., Kardia, S. L. R., Boerwinkle, E., Liu, K., Klos, K. L. E., 
Clark, A. G., & Sing, C. F. (2006). Evidence for consistent intragenic 

and intergenic interactions between SNP effects in the APOA1/
C3/A4/A5 gene cluster. Human Heredity, 61, 87–96. https​://doi.
org/10.1159/00009​3384

Hastings, C., Mosteller, F., Tukey, J. W., & Winsor, C. P. (1947). Low 
moments for small samples: A comparative study of order statis‐
tics. The Annals of Mathematical Statistics, 18, 413–426. https​://doi.
org/10.1214/aoms/11777​30388​

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster match‐
ing and permutation program for dealing with label switching and 
multimodality in analysis of population structure. Bioinformatics, 23, 
1801–1806. https​://doi.org/10.1093/bioin​forma​tics/btm233

Karimi, Z., Sargolzaei, M., JaB, R., & Schenkel, F. S. (2018). Assessing 
haplotype‐based models for genomic evaluation in Holstein cat‐
tle. Canadian Journal of Animal Science, 98, 750–759. https​://doi.
org/10.1139/cjas-2018-0009

Khattak, J. Z. K., Torp, A. M., & Andersen, S. B. (2006). A genetic linkage 
map of Spinacia oleracea and localization of a sex determination locus. 
Euphytica, 148, 311–318. https​://doi.org/10.1007/s10681-005-9031-1

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: 
Molecular evolutionary genetics analysis across computing plat‐
forms. Molecular Biology and Evolution, 35, 1547–1549. https​://doi.
org/10.1093/molbe​v/msy096

Langmead, B., & Salzberg, S. L. (2012). Fast gapped‐read alignment with 
Bowtie 2. Nature Methods, 9, 357–U354. https​://doi.org/10.1038/
Nmeth.1923

Liu, F., Tang, G., Zheng, X., Li, Y., Sun, X., Qi, X., … Gong, G. (2016a). 
Molecular and phenotypic characterization of Colletotrichum spe‐
cies associated with anthracnose disease in peppers from Sichuan 
Province. China. Scientific Reports, 6, 32761. https​://doi.org/10.1038/
srep3​2761

Liu, L. P., Jin, X. S., Yu, L., Lu, B. H., Liu, Y. N., Yang, L. Y., … Hsiang, T. 
(2016b). Colletotrichum dematium: Causing anthracnose on common 
knotgrass (Polygonum aviculare) in China. Plant Disease, 100, 1240–
1240. https​://doi.org/10.1094/PDIS-10-15-1161-PDN

Liu, L. P., Shu, J., Zhang, L., Hu, R., Chen, C. Q., Yang, L. N., 
…Hsiang, T. (2017). First Report of post‐harvest anthracnose on 
mango (Mangifera indica) caused by Colletotrichum siamense in 
China. Plant Disease, 101, 833–833. https​://doi.org/10.1094/
PDIS-08-16-1130-PDN

Liu, T., Chen, D., Liu, Z., & Hou, J. M. (2018). First report of Colletotrichum 
siamense causing anthracnose on partridge tea (Mallotus oblongifolius) 
in China. Plant Disease, 102, 1669–1669. https​://doi.org/10.1094/
PDIS-12-17-1957-PDN

Long, A. D., & Langley, C. H. (1999). The power of association studies to de‐
tect the contribution of candidate genetic loci to variation in complex 
traits. Genome Research, 9, 720–731. https​://doi.org/10.1101/gr.9.8.720

Lorenz, A. J., Hamblin, M. T., & Jannink, J.‐L. (2010). Performance of sin‐
gle nucleotide polymorphisms versus haplotypes for Genome‐Wide 
Association Analysis in Barley. PLoS ONE, 5, e14079. https​://doi.
org/10.1371/journ​al.pone.0014079

Meuwissen, T. H. E., Odegard, J., Andersen‐Ranberg, I., & Grindflek, E. 
(2014). On the distance of genetic relationships and the accuracy of 
genomic prediction in pig breeding. Genetics, Selection, Evolution, 46, 
49–49. https​://doi.org/10.1186/1297-9686-46-49

Morelock, T. E., & Correll, J. C. (2008) Spinach. In J. Prohens & F. Nuez 
(Eds), Vegetables I: Asteraceae, brassicaceae, chenopodicaceae, and cu-
curbitaceae (pp. 189–218). New York, NY: Springer, New York. https​
://doi.org/10.1007/978-0-387-30443-4-6.

Morris, R. W., & Kaplan, N. L. (2002). On the advantage of haplotype anal‐
ysis in the presence of multiple disease susceptibility alleles. Genetic 
Epidemiology, 23, 221–233. https​://doi.org/10.1002/gepi.10200​

Niu, X. P., Gao, H., Chen, Y., & Qi, J. M. (2016). First Report of Anthracnose 
on White Jute (Corchorus capsularis) caused by Colletotrichum fructi-
cola and C. siamense in China. Plant Disease, 100, 1243–1243. https​://
doi.org/10.1094/PDIS-12-15-1418-PDN

https://doi.org/10.1094/PDIS-04-13-0352-PDN
https://doi.org/10.1094/PDIS-04-13-0352-PDN
https://doi.org/10.1105/tpc.013656
https://doi.org/10.1105/tpc.013656
https://doi.org/10.1002/gepi.20025
https://doi.org/10.1094/PD-78-0653
https://doi.org/10.1094/PDIS.2000.84.2.198A
https://doi.org/10.1094/PDIS.2000.84.2.198A
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1038/ng1669
https://doi.org/10.1016/S1369-5266(03)00060-8
https://doi.org/10.1016/S1369-5266(03)00060-8
https://doi.org/10.1214/aoms/1177705900
https://doi.org/10.1214/aoms/1177705900
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1002/j.1537-2197.1960.tb07115.x
https://doi.org/10.1002/j.1537-2197.1960.tb07115.x
https://doi.org/10.1534/g3.112.004259
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1471-8286.2007.01758.x
https://doi.org/10.1111/j.1471-8286.2007.01758.x
https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
https://doi.org/10.1371/journal.ppat.1005941
https://doi.org/10.1146/annurev.arplant.54.031902.134907
https://doi.org/10.1126/science.1069424
https://doi.org/10.1126/science.1069424
https://doi.org/10.1159/000093384
https://doi.org/10.1159/000093384
https://doi.org/10.1214/aoms/1177730388
https://doi.org/10.1214/aoms/1177730388
https://doi.org/10.1093/bioinformatics/btm233
https://doi.org/10.1139/cjas-2018-0009
https://doi.org/10.1139/cjas-2018-0009
https://doi.org/10.1007/s10681-005-9031-1
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1038/Nmeth.1923
https://doi.org/10.1038/Nmeth.1923
https://doi.org/10.1038/srep32761
https://doi.org/10.1038/srep32761
https://doi.org/10.1094/PDIS-10-15-1161-PDN
https://doi.org/10.1094/PDIS-08-16-1130-PDN
https://doi.org/10.1094/PDIS-08-16-1130-PDN
https://doi.org/10.1094/PDIS-12-17-1957-PDN
https://doi.org/10.1094/PDIS-12-17-1957-PDN
https://doi.org/10.1101/gr.9.8.720
https://doi.org/10.1371/journal.pone.0014079
https://doi.org/10.1371/journal.pone.0014079
https://doi.org/10.1186/1297-9686-46-49
https://doi.org/10.1007/978-0-387-30443-4-6
https://doi.org/10.1007/978-0-387-30443-4-6
https://doi.org/10.1002/gepi.10200
https://doi.org/10.1094/PDIS-12-15-1418-PDN
https://doi.org/10.1094/PDIS-12-15-1418-PDN


     |  17AWIKA et al.

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. 
(2012). Double digest RADseq: An inexpensive method for de novo 
SNP discovery and genotyping in model and non‐model species. PLoS 
ONE, 7, e37135. https​://doi.org/10.1371/journ​al.pone.0037135

Porfirova, S., Bergmuller, E., Tropf, S., Lemke, R., & Dormann, P. (2002). 
Isolation of an Arabidopsis mutant lacking vitamin E and identifica‐
tion of a cyclase essential for all tocopherol biosynthesis. Proceedings 
of the National Academy of Sciences of the United States of America, 99, 
12495–12500. https​://doi.org/10.1073/pnas.18233​0899

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of popu‐
lation structure using multilocus genotype data. Genetics, 155, 945.

Qin, Z. S., Niu, T., & Liu, J. S. (2002). Partition‐ligation‐expectation‐max‐
imization algorithm for haplotype inference with single‐nucleotide 
polymorphisms. American Journal of Human Genetics, 71, 1242–1247. 
https​://doi.org/10.1086/344207

Rochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD‐
seq short‐read data using Stacks. Nature Protocols, 12, 2640–2659. 
https​://doi.org/10.1038/nprot.2017.123

Rodríguez‐Sanoja, R., Oviedo, N., & Sánchez, S. (2005). Microbial starch‐
binding domain. Current Opinion in Microbiology, 8, 260–267. https​://
doi.org/10.1016/j.mib.2005.04.013

Saitou, N., & Nei, M. (1987). The neighbor‐joining method: A new method 
for reconstructing phylogenetic trees. Molecular Biology and Evolution, 
4, 406–425. https​://doi.org/10.1093/oxfor​djour​nals.molbev.a040454

Samsatly, J., Copley, T. R., & Jabaji, S. H. (2018). Antioxidant genes of 
plants and fungal pathogens are distinctly regulated during disease 
development in different Rhizoctonia solani pathosystems. PLoS ONE, 
13, e0192682. https​://doi.org/10.1371/journ​al.pone.0192682

Sandoval, F. J., Zhang, Y., & Roje, S. (2008). Flavin nucleotide metabolism 
in plants: Monofunctional enzymes synthesize fad in plastids. Journal 
of Biological Chemistry, 283, 30890–30900. https​://doi.org/10.1074/
jbc.M8034​16200​

Schaid, D. J. (2004). Evaluating associations of haplotypes with traits. Genetic 
Epidemiology, 27, 348–364. https​://doi.org/10.1002/gepi.20037​

Sengupta, S., Mukherjee, S., Basak, P., & Majumder, A. L. (2015). Significance 
of galactinol and raffinose family oligosaccharide synthesis in plants. 
Frontiers in Plant Science, 6, https​://doi.org/10.3389/fpls.2015.00656​

Sharma, G., Kumar, N., Weir, B. S., Hyde, K. D., & Shenoy, B. D. (2013). 
The ApMat marker can resolve Colletotrichum species: A case study 
with Mangifera indica. Fungal Diversity, 61, 117–138. https​://doi.
org/10.1007/s13225-013-0247-4

Shi, A., Mou, B., Correll, J., Koike, S. T., Motes, D., & Qin, J., …Yang, W. 
(2016a). Association analysis and identification of SNP markers for 
Stemphylium Leaf Spot (Stemphylium botryosum f. sp. spinacia) re‐
sistance in Spinach (Spinacia oleracea). American Journal of Plant 
Sciences, 7, 1600–1611. https​://doi.org/10.4236/ajps.2016.712151

Shi, A., Mou, B., Correll, J., Motes, D., Weng, Y., Qin, J., & Yang, W. (2016b). 
SNP association analysis of resistance to Verticillium wilt (Verticillium 
dahliae Kleb.) in spinach. Australian Journal of Crop Science, 10, 1188–
1196. https​://doi.org/10.21475/​ajcs.2016.10.08.p7893​

Shi, A., Qin, J., Mou, B., Correll, J., Weng, Y., Brenner, D., … Ravelombola, 
W. (2017). Genetic diversity and population structure analysis of 
spinach by single‐nucleotide polymorphisms identified through 
genotyping‐by‐sequencing. PLoS ONE, 12, e0188745. https​://doi.
org/10.1371/journ​al.pone.0188745

Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J., & Holmes, I. H. 
(2009). JBrowse: A next‐generation genome browser. Genome 
Research, 19, 1630–1638. https​://doi.org/10.1101/gr.094607.109

Smith, J. E., & Aveling, S. (1997). Colletotrichum dematium: Causal agent of 
a new cowpea stem disease in South Africa. Plant Disease, 81, 832–
832. https​://doi.org/10.1094/PDIS.1997.81.7.832D

Su, W.‐H., Yao Shugart, Y., Chang, K.‐P., Tsang, N.‐M., Tse, K.‐P., & Chang, 
Y.‐S. (2013). How Genome‐wide SNP‐SNP interactions relate to na‐
sopharyngeal carcinoma susceptibility. PLoS ONE, 8, e83034. https​://
doi.org/10.1371/journ​al.pone.0083034

Tabangin, M. E., Woo, J. G., & Martin, L. J. (2009). The effect of minor 
allele frequency on the likelihood of obtaining false positives. BMC 
Proceedings, 3, S41. https​://doi.org/10.1186/1753-6561-3-S7-S41

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large 
phylogenies by using the neighbor‐joining method. Proceedings of the 
National Academy of Sciences (USA), 101, 11030–11035. https​://doi.
org/10.1073/pnas.04042​06101​

The_Gene_Ontology_Consortium (2019). The Gene Ontology Resource: 20 
years and still GOing strong. Nucleic Acid Research, 47, D330–D338.

The_Uniprot_Consortium (2019). UniProt: A worldwide hub of protein 
knowledge. Nucleic Acids Research, 47, D506–D515.

Turner, S. D. (2018). qqman: An R package for visualizing GWAS results 
using Q‐Q and manhattan plots. Journal of Open Source Software, 
3(25), 731. https​://doi.org/10.21105/​joss.00731​

Washington, W. S., Irvine, G., Aldaoud, R., Dealwis, S., Edwards, J., & 
Pascoe, I. G. (2006). First record of anthracnose of spinach caused by 
Colletotrichum dematium in Australia. Australasian Plant Pathology, 35, 
89–91. https​://doi.org/10.1071/AP05095

Wu, Y., Fan, H., Wang, Y., Zhang, L., Gao, X., Chen, Y., … Gao, H. (2014). 
Genome‐wide association studies using haplotypes and individual 
SNPs in Simmental cattle. PLoS ONE, 9, e109330–e109330. https​://
doi.org/10.1371/journ​al.pone.0109330

Xu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., … Wang, Q. (2017). Draft 
genome of spinach and transcriptome diversity of 120 Spinacia ac‐
cessions. Nature Communications, 8, 15275. https​://doi.org/10.1038/
ncomm​s15275 https​://www.nature.com/artic​les/ncomm​s1527​
5#suppl​ement​ary-infor​mation

Yang, X.‐D., Tan, H.‐W., & Zhu, W.‐M. (2016). SpinachDB: A Well‐char‐
acterized genomic database for gene family classification and 
SNP information of spinach. PLoS ONE, 11, e0152706. https​://doi.
org/10.1371/journ​al.pone.0152706

Yoshida, S., & Shirata, A. (1999). Survival of Colletotrichum dematium in 
soil and infected mulberry leaves. Plant Disease, 83, 465–468. https​
://doi.org/10.1094/PDIS.1999.83.5.465

Zhang, Z., Ersoz, E., Lai, C.‐Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., 
… Buckler, E. S. (2010). Mixed linear model approach adapted for ge‐
nome‐wide association studies. Nature Genetics, 42, 355–360. https​
://doi.org/10.1038/ng.546

Zhao, H. H., Fernando, R. L., & Dekkers, J. C. M. (2007). Power and pre‐
cision of alternate methods for linkage disequilibrium mapping of 
quantitative trait loci. Genetics, 175, https​://doi.org/10.1534/genet​
ics.106.066480

Zhao, H., Pfeiffer, R., & Gail, M. H. (2003). Haplotype analysis in popula‐
tion genetics and association studies. Pharmacogenomics, 4, 171–178. 
https​://doi.org/10.1517/phgs.4.2.171.22636​

Zhao, K., Aranzana, M. J., Kim, S., Lister, C., Shindo, C., Tang, C., … 
Nordborg, M. (2007). An Arabidopsis example of association mapping 
in structured samples. PLOS Genetics, 3, e4. https​://doi.org/10.1371/
journ​al.pgen.0030004

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section.    

How to cite this article: Awika HO, Cochran K, Joshi V, Bedre 
R, Mandadi KK, Avila CA. Single‐marker and haplotype‐based 
association analysis of anthracnose (Colletotrichum dematium) 
resistance in spinach (Spinacia oleracea). Plant Breed. 
2019;00:1–17. https​://doi.org/10.1111/pbr.12773​

https://doi.org/10.1371/journal.pone.0037135
https://doi.org/10.1073/pnas.182330899
https://doi.org/10.1086/344207
https://doi.org/10.1038/nprot.2017.123
https://doi.org/10.1016/j.mib.2005.04.013
https://doi.org/10.1016/j.mib.2005.04.013
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1371/journal.pone.0192682
https://doi.org/10.1074/jbc.M803416200
https://doi.org/10.1074/jbc.M803416200
https://doi.org/10.1002/gepi.20037
https://doi.org/10.3389/fpls.2015.00656
https://doi.org/10.1007/s13225-013-0247-4
https://doi.org/10.1007/s13225-013-0247-4
https://doi.org/10.4236/ajps.2016.712151
https://doi.org/10.21475/ajcs.2016.10.08.p7893
https://doi.org/10.1371/journal.pone.0188745
https://doi.org/10.1371/journal.pone.0188745
https://doi.org/10.1101/gr.094607.109
https://doi.org/10.1094/PDIS.1997.81.7.832D
https://doi.org/10.1371/journal.pone.0083034
https://doi.org/10.1371/journal.pone.0083034
https://doi.org/10.1186/1753-6561-3-S7-S41
https://doi.org/10.1073/pnas.0404206101
https://doi.org/10.1073/pnas.0404206101
https://doi.org/10.21105/joss.00731
https://doi.org/10.1071/AP05095
https://doi.org/10.1371/journal.pone.0109330
https://doi.org/10.1371/journal.pone.0109330
https://doi.org/10.1038/ncomms15275
https://doi.org/10.1038/ncomms15275
https://www.nature.com/articles/ncomms15275#supplementary-information
https://www.nature.com/articles/ncomms15275#supplementary-information
https://doi.org/10.1371/journal.pone.0152706
https://doi.org/10.1371/journal.pone.0152706
https://doi.org/10.1094/PDIS.1999.83.5.465
https://doi.org/10.1094/PDIS.1999.83.5.465
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/ng.546
https://doi.org/10.1534/genetics.106.066480
https://doi.org/10.1534/genetics.106.066480
https://doi.org/10.1517/phgs.4.2.171.22636
https://doi.org/10.1371/journal.pgen.0030004
https://doi.org/10.1371/journal.pgen.0030004
https://doi.org/10.1111/pbr.12773

